The UK TEX FAQ
Your 244 Questions Answered
version 3.0b, date 2002/05/21

Maintained by Robin Fairbairns
May 29, 2002

NOTE

This document is an updated and extended version of the FAQ article that was published as the December 1994

and 1995, and March 1999 editions of the UK TUG magazine Baskerville (which weren’t formatted like this).

Contents D Bits and pieces of TEX
33 WhatisaDVIfile?
A Introduction 3 34 Whatisadriver?
B The Background 4 35 What are PK files?
1 WhatisTEX? 4 36 What are TFM files?
2 How should I pronounce “TEX”?. 4 37 Virtualfonts
3 What is METAFONT? 4 38 \special commands
4 What is MetaPost? 4 39 Documented ITEX sources (.dtx files) .
5 How can I be sure it’s really TEX?) 40 What are encodings?
6 Are TpX and friends Y2K compliant? . . 5 41 How does hyphenation work in TEX? . .
7 Whatis BTEX? 5 42 What are the EC fonts?
8 What is BTEX2:7 5 43 What isthe TDS?
9 How should I pronounce “KETEX(2¢)”7 5 44 What is “Encapsulated PostScript”
10 Should I use Plain TEX or BTEX? 5 E Acquiring the Software
11 How does ITEX relate to Plain TEX? . . 6 45 Repositories of TEX material
12 What is ConTEXt? 6 46 What’s the CTAN nonfree tree?
13 What are the AMS packages (AMS-TEX, 47 Contributing a file to the archives
ete)? oL 6 48 Finding (I2)TEX macro packages
14 What is Eplain? 6 49 Finding files in the CTAN archives
15 What is Lollipop? 6 50 Finding files by Web search
16 What is Texinfo? 7 51 Finding new fonts
17 If TeX is so good, how come it’s free? . . 7 52 TEX CD-ROMS o
18 What is the future of TRX? 7 F TgEX Systems
19 Reading (IM)TEX files 7 53 (IM)TEX for different machines
20 Why is TEX not a WYSIWYG system? . . 7 54 TgX-friendly editors and shells
21 TgX User Groups 8 55 Commercial TEX implementations
C Documentation and Help 8 G DVI Drivers and Previewers
22 Books on TEX and its relations 8 56 DVI to PostScript conversion programs .
23 Bookson Type 9 57 DVI drivers for HP LaserJet
24 Whereto find FAQs 10 58 Output to “other” printers
25 Wheretogethelp 10 59 DVI previewers
26 How to ask a question 10 H Support Packages for TEX
27 (I)TIEX Tutorials, etc. 11 60 Fig, a TpX-friendly drawing package .
28 Learning to write IXTEX classes and pack- 61 TgXCAD, a drawing package for INTEX .
AZES . v e e e e e 11 62 Spelling checkers for work with TEX . . .
29 METAFONT and MetaPost Tutorials . . . 11 63 How many words have you written? . . .
30 BIBTEX Documentation. 12 I Literate programming
31 Where can I find the symbol for... . .. 12 64 What is Literate Programming?
32 The PICTEX manual 12 65 WEB systems for various languages . . .

The article is also available via the World Wide Web.

12
12
12
13
13
13
13
13
13
14
14
15
15
15
15
16
16
16
16
17
17
17
17
17
19
19
20
20
21
21
21
21
21
21
21
22
22
22
22

J Format conversions 22 P.2 Document structure 39
66 Conversion between (E—\)’IE}(and others . 22 110 The Style of document titles 39
67 Conversion from (I3)TEX to plain ASCII 23 111 The style of sect%on head%ngs 39
65 Comion o SOML o ML 0 TGX 23| 1 Tkt st on e
69 (B)TEX conversion to HTML 24 114 The style of captions 40
70 Using TEX to read SGML or XML directly = 24 115 Alternative head- and footlines in IATEX 40
71 Retrieving (IM)TEX from DVI, ete. 25 116 Changing the margins in BTEX 40
72 Translating WTEX to Plain TRX 25 117 Wide figures in two-column documents . 41
K Hypertext and PDF 25 118 1-column abstract in 2-column document 41
73 Making hypertext documents from TgX . 25 119 Really blank pages between chapters . . 42
74 Making Acrobat documents from ITEX . 25 P.3 ;ZSgeBlil;zflltng columns at the end of a document :?2)
75 Quality of PDF from PostScript 26) 121 How to get rid of page numbers 43
76 Finding ‘8-bit’ Type 1 fonts 26 122 \pagestyle{empty} on first page in ITEX 43
77 Replacing Type 3 fonts in PostScript . . 27 123 How to create crop marks 43
L METAFONT and MetaPost 27 124 ‘Watermarks’ on every page 43
78 Getting METAFONT to do what you want 27 125 Typesetting things in landscape orientation 43
79 Which font files should be kept 28 126 Putting things at fixed positions on the
80 Acquiring bitmap fonts 28 - Spacli)géeof. hntastors aad Tinee ﬁ
81 lgvl[zil;frslcgripl;/[étél:.b?t. outp 1.lt. 'dl.SI.)la.y. .1n. 28 127 Double.—spaced documents in BTpX ... 44
. 128 Changing the space between letters . . . 44
M PostScript and TEX 29 129 Setting text ragged right 44
82 Using PostScript fonts with TEX 29 130 Cancelling \ragged commands 45
83 Previewing files using Type 1 fonts . .. 29 P.5 Typesetting specialities 45
84 TgX font metric files for PostScript fonts 30 131 Including a file in verbatim in BTEX . . 45
85 Deploying Type 1 fonts 30 132 Including line numbers in typeset output 45
86 Choice of scalable outline fonts 30 133 Generatipg an index in (B)TEX 45
87 Including a PostScript figure in (I8 TEX . 33 12; %gg:zgiﬂi ii;i mTEX """"" jg
88 Weird characters in dvips output 34 136 Other “document font” sizes? 46
N Bibliographies and citations 34 137 Zero paragraph indent 47
89 Creating a bibliography style 34 138 Set specifications and Dirac brackets . . 47
90 Capitalisation in BIBTEX 34 139 Big letters at the start of a paragraph . . 47
91 ‘String too long’ in BIBTEX 34 140 Code listings in BTEX 47
92 BIBTEX doesn’t understand my lists of 141 The comma as a decimal separator . .. 48
names 34 142 Breaking boxes of text 48
93 Citing URLs with BIBTEX 35 o rlIé‘Ebl?[‘sh(e) f;(::r(r)r?;: f)l; ihianaglleds;(gsontents etc iz
94 Using BIETEX with Plain TEX 144 Unnumbered sections in the Table of éon-
95 Separate bibliographies per chapter? . . 35 tents 48
96 Multiple bibliographies? 35 145 Bibliography, index, etc., in TOC 49
97 Putting bibliography entries in text . . . 36 146 Multiple indexes 49
98 Sorting and compressing citations 36 Q How do I do X in (B)TEX 49
99 Multiple citations 36 Q.1 Mathematics 49
100 Listing all my BIBTEX entries 36 ig Efoof erglifonment ------------ jg
. . oman theorems
o Ii21al¥j§1?§;11g(Lf;)fezour Bibliography ... ;; 0.2 }_ﬁgtsDeﬁning a new log-like function in WTEX ;13
102 Installing a new package 37 150 Fancy enumeration lists 50
103 Where to put new files 37 151 How to reduce list spacing 50
104 “Temporary” installation of (M) TEX files 38 Q.3 Tables, figures and diagrams 50
P Adjusting the typesetting 38 152 Fixed-width tables 50
P.1 Alternative document classes 38 Ei i‘pi(ljngl lines itILtables. '1 """"" 2(1)
. . ables longer than a single page
Lon Kommatting o e n WX 135 How to alte the aligament of tabulas cells 51
156 Flowing text around figures in BTgX . . 52
107 A ‘report’ from lots of ‘article’s 38 157 Drawing with TEX 59
108 Curriculum Vitae (Resumé) 39 158 Drawing Feynman diagrams in BTgX . . 52
109 Letters and the like 39 159 Floats on their own on float pages 53

.4 Footnotes 53
Q

160 Footnotes in tables 53
161 Footnotes in ITEX section headings . . . 53
162 Footnotes in captions 54
163 Footnotes whose texts are identical . . . 54
Q.5 Document management 54
164 What’s the name of this file 54
165 All the files used by this document . .. 55
166 Marking changed parts of your document 55
167 Conditional compilation 55
168 Bits of document from other directories . 56
169 Version control using RCSor CVS 56
Q.6 Hyphenation 56
170 My words aren’t being hyphenated . .. 56
171 Weird hyphenation of words 57
172 (Merely) peculiar hyphenation 57
173 Accented words aren’t hyphenated . .. 57
174 Using a new language with Babel 57
175 Stopping all hyphenation 58
Q.7 Odds and ends 59
176 Typesetting all those TEX-related logos . 59
177 Referring to things by their name 59
178 How to do bold-tt or bold-sc 59
R Symbols, etc. 59
179 Symbols for the number sets 59
180 Better script fonts for maths 60
181 Setting bold Greek letters in KTgX . . . 60
182 The Principal Value Integral symbol . . 61
183 How to use the underscore character . . 61
184 How to type an ‘Q’ sign? 61
185 Typesetting the Eurosign 61
S Macro programming 62
186 Finding the width of a letter, word, or
phrase 62
187 How to change BTEX’s “fixed names” . . 62
188 Changing the words babel uses 62
189 Running equation, figure and table num-
bering L. 63
190 Patching existing commands 63
191 \@ and @ in macro names 63
192 What’s the reason for ‘protection’? . . . 64
193 \edef does not work with \protect. .. 64
194 Optional arguments like \section. . .. 64
195 Making labels from a counter 64
196 Finding if you're on an odd or an even page 64
197 How to change the format of labels . . . 65
198 Comparing the “job name” 65
199 Is the argument a number? 65
200 Defining macros within macros. 66
201 Spaces in macros 66
T Things are Going Wrong. .. 67
T.1 Getting things to fit 67
202 Enlarging TEX 67
203 Why can’t I load P[CTEX? 67

A Introduction

This FAQ was prepared by the Committee of the UK TEX
Users’” Group (UK TUG) as a development of a regular
posting to the Usenet newsgroup comp.text.tex that
was maintained for some time by Bobby Bodenheimer.

T.2 Making things stay where you want them 68

204 Moving tables and figures in WTEX . .. 68

205 Underlined text won’t break 68

206 Controlling widows and orphans 69

T.3 Things have “gone away” 69

207 Old ETEX font references such as \tenrm 69

208 Missing symbol commands 69

209 Where are the msx and msy fonts? 69

210 Where are the am fonts? 69

U Why does it do that? 70

U.1 Common errors 70

211 BTEX gets cross-references wrong 70

212 Start of line goes awry 70

213 Why doesn’t \verb work within...?. . . 70

214 No line heretoend 71

U.2 Common misunderstandings 71
215 What’s going on in my \include com-

mands? 71

216 Why does it ignore paragraph parameters? 72

217 Case-changing oddities 72
218 Why does ETEX split footnotes across

pages?o 72

219 Getting \marginpar on the right side . . 73

220 Where have my characters gone? 73

221 “Rerun” messages won’t go away 73

222 Commands gobble following space 73

223 (IM)TEX makes overfull lines 74

V The joy of TEX errors 75

224 How to approach errors 75

225 The structure of TEX error messages . . 75

226 Anextra ‘}77 76

227 Capacity exceeded [semantic nest...] . . 76

228 No room for a new ‘thing’ 76

229 epsf gives up afterabit 76

230 Improper \hyphenation will be flushed . 77

231 “Too many unprocessed floats” 77

232 \spacefactor complaints 7

233 \end occurred inside a group 77

234 “Missing number, treated as zero” 78

W Current TEX Projects 78

235 The BTEX3 project 78

236 The Omega project 78

237 The N78 project 78

238 The PDFTEX project 79

239 Future WEB technologies and (IMTEX . . 79

240 The TgXtrace project 79

X You’'re still stuck? 80

241 You don’t understand the answer 80

242 Submitting new material for the FAQ . . 80

243 Reporting a BTEX bug 80

244 What to do if you find abug 80

The first UK version was much re-arranged and corrected
from the original, and little of Bodenheimer’s work now
remains.

An HTML translation of the FAQ is available on the
World-Wide Web, via URL http://www.tex.ac.uk/faq;
an alternative HTML version is also to be found on the

TEX Live CD-ROM (see question 52).

Most members of the committee of UK TUG, over
the years since 1994, have contributed to this FAQ to
some extent. The following people, who have never
been members of the committee, have also contributed
help or advice: Donald Arseneau, Barbara Beeton,
Karl Berry, Giuseppe Bilotta, Damian Cugley, Michael
Dewey, Michael Downes, Thomas Esser, Anthony Gore-
ham, Norman Gray, Eitan Gurari, John Hobby, Berthold
Horn, Tan Hutchinson, Werner Icking, David Kastrup,
Daniel Luecking, Sanjoy Mahajan, Andreas Matthias,
Ted Nieland, Pat Rau, Heiko Oberdiek, Piet van Oost-
rum, Scott Pakin, Oren Patashnik, José Carlos Santos,
Walter Schmidt, Joachim Schrod, Ulrik Vieth, Mike Vulis,
Peter Wilson, Rick Zaccone and Reinhard Zierke.

Finding the Files

Unless otherwise specified, all files mentioned in this FAQ
are available from a CTAN archive, or from one of their
mirrors. Question 45 gives details of the CTAN archives,
and how to retrieve files from them. If you don’t have
access to the Internet, question 52 tells you of sources of
CD-ROMs that offer snapshots of the archives.

The reader should also note that the first directory
name of the path name of every file on CTAN has been
elided from what follows, for the simple reason that it’s
always the same (tex-archive/).

To avoid confusion, we've also elided the full stop!
from the end of any sentence whose last item is a path
name (note that such sentences only occur at the end of
paragraphs). Though the path names are set in a differ-
ent font from running text, it’s not easy to distinguish the
font of a single dot!

B The Background

1 What is TX?

TEX is a typesetting system written by Donald E.
Knuth (see http://sunburn.stanford.edu/ knuth/),
who says in the Preface to his book on TEX (see ques-
tion 22) that it is “intended for the creation of beauti-
ful books — and especially for books that contain a lot of
mathematics”.

Knuth is Emeritus Professor of the Art of Computer
Programming at Stanford University in California, USA.
Knuth developed the first version of TEX in 1978 to deal
with revisions to his series “the Art of Computer Pro-
gramming”, but the idea proved popular and he produced
a second version (in 1982) is the basis of what we use to-
day.

Knuth developed a system of ‘literate programming’
(see question 64) to write TEX, and he provides the lit-
erate (WEB) source of TEX free of charge, together with
tools for processing the web source into something that
can be compiled and something that can be printed;
there’s never any mystery about what TEX does. Fur-
thermore, the WEB system provides mechanisms to port

LFull stop’ (British English)=="‘period’ (American English)
2PDFIATEX cannot normally handle PostScript inclusions

TEX to new operating systems and computers; and in
order that one may have some confidence in the ports,
Knuth supplied a test (see question 5) by means of which
one may judge the fidelity of a TEX system. TEX and its
documents are therefore highly portable.

TEX is a macro processor, and offers its users a pow-
erful programming capability. For this reason, TEX on its
own is a pretty difficult beast to deal with, so Knuth pro-
vided a package of macros for use with TEX called Plain
TEX; Plain TEX is effectively the minimum set of macros
one can usefully employ with TEX, together with some
demonstration versions of higher-level commands (the lat-
ter are better regarded as models than used as-is). When
people say they’re “programming in TEX”, they usually
mean they’re programming in Plain TEX.

2 How should I pronounce “TgX”?

The ‘X’ stands for the Greek letter Chi (x), and is pro-
nounced by English-speakers either a bit like the ‘ch’ in
the Scots word ‘loch’ ([x] in the TPA) or like ‘k’. It defi-
nitely is not pronounced ‘ks’.

3 What is METAFONT?

METAFONT was written by Knuth as a companion to
TEX; whereas TEX defines the layout of glyphs on a page,
METAFONT defines the shapes of the glyphs and the re-
lations between them. METAFONT details the sizes of
glyphs, for TEX’s benefit, and details the rasters used to
represent the glyphs, for the benefit of programs that will
produce printed output as post processes after a run of
TiX.

METAFONT’s language for defining fonts permits the
expression of several classes of things: first (of course),
the simple geometry of the glyphs; second, the properties
of the print engine for which the output is intended; and
third, ‘meta’-information which can distinguish different
design sizes of the same font, or the difference between
two fonts that belong to the same (or related) families.

Knuth (and others) have designed a fair range of fonts
using METAFONT, but font design using METAFONT is
much more of a minority skill than is TEX macro-writing.
The complete TEX-user nevertheless needs to be aware of
METAFONT, and to be able to run METAFONT to gener-
ate personal copies of new fonts.

4 What is MetaPost?

The MetaPost system (by John Hobby) implements a
picture-drawing language very much like that of META-
FONT except that it outputs Encapsulated PostScript files
instead of run-length-encoded bitmaps. MetaPost is a
powerful language for producing figures for documents to
be printed on PostScript printers, either directly or em-
bedded in (I#)TEX documents. It includes facilities for
directly integrating TEX text and mathematics with the
graphics. The PostScript output is of such a simple form
that MetaPost output files can be directly included in
PDFETEX? documents (see question 238). (Knuth tells
us that he uses nothing else but MetaPost for diagrams
in text that he is writing.)

Much of MetaPost’s source code was copied from
METAFONT’s sources with Knuth’s permission.

5 How can I be sure it’s really TEX?

TEX (and METAFONT and MetaPost) are written in a ‘lit-
erate’ programming language called Web (see question 64)
which is designed to be portable across a wide range of
computer systems. How, then, is a new version of TEX
checked?

Of course, any sensible software implementor will have
his own suite of tests to check that his software runs: those
who port TEX and its friends to other platforms do indeed
perform such tests.

Knuth, however, provides a ‘conformance test’ for
both TEX (trip) and METAFONT (trap). He charac-
terises these as ‘torture tests’: they are designed not
to check the obvious things that ordinary typeset docu-
ments, or font designs, will exercise, but rather to explore
small alleyways off the main path through the code of
TEX. They are, to the casual reader, pretty incompre-
hensible!

Once an implementation of TEX has passed its trip,
or an implementation of METAFONT has passed its trap,
test it may reasonably be distributed as a working version.

6 Are TEX and friends Y2K compliant?

Crashing: None of TEX, METAFONT or MetaPost can
themselves crash due to any change whatever in the
date of any sort.

Timestamps: As Knuth delivers the sources, a 2-digit
year is stored as the creation time for format files
and that value is printed in logfiles. These items
should not be of general concern, since the only use
of the date format file is to produce the log output,
and the log file is designed for human readers only.
Knuth’s distributed source does not designate the
code, which generates this 2-digit date, as a valid
area where implementations may differ. However,
he announced in 1998 that implementators can al-
ter this code without fear of being accused of non-
compliance. Nearly all implementations that are
being actively maintained had been modified to gen-
erate 4-digit years in the format file and the log, by
the end of 1998.

The \year primitive: Certification of a TEX implemen-
tation (see question 5) does not require that \year
return a meaningful value (which means that TEX
can, in principle, be implemented on platforms that
don’t make the value of the clock available to user
programs). The TgXbook (see question 22) defines
\year as “the current year of our Lord”, which is
the only correct meaning for \year for those imple-
mentations which can supply a meaningful value,
which is to say nearly all of them.

In short, TEX implementations should provide a
value in \year giving the 4-digit year Anno Domini,
or the value 1776 if the platform does not support
a date function.

Note that if the system itself fails to deliver a cor-
rect date to TEX, then \year will of course return
an incorrect value. TEX cannot be considered Y2K

compliant, in this sense, on a system that is not
itself Y2K compliant.

Macros: TEX macros can in principle perform calcula-
tions on the basis of the value of \year. The ITEX
suite (see question 7) performs such calculations
in a small number of places; the calculations per-
formed in the current (supported) version of BTEX
are known to be Y2K compliant.

Other macros and macro packages should be indi-
vidually checked.

External software: Software such as DVI translators
needs to be individually checked.

7 What is BTEX?

ETEX is a TEX macro package, originally written by Leslie
Lamport, that provides a document processing system.
ITEX allows markup to describe the structure of a docu-
ment, so that the user need not think about presentation.
By using document classes and add-on packages, the same
document can be produced in a variety of different lay-
outs.

Lamport says that IXTEX “represents a balance be-
tween functionality and ease of use”. This shows itself
as a continual conflict that leads to the need for such
things as FAQs: IMTEX can meet most user requirements,
but finding out how is often tricky.

8 What is BTEX 2¢7

Lamport’s last version of BTEX (BTEX2.09, last up-
dated in 1992) was superseded in 1994 by a new ver-
sion (BMTEX2¢) written by the KTEX team (see ques-
tion 235). IATEX 2¢ is now the only readily-available ver-
sion of IATREX, and draws together several threads of M TEX
development from the later days of XTEX 2.09.

TEX 2¢ has several enhancements over ETEX 2.09,
but they were all rather minor, with a view to con-
tinuity and stability rather than the “big push” that
some had expected from the team. KITEX2c continues
to this day to offer a compatibility mode in which most
files prepared for use with KTEX2.09 will run (albeit
with somewhat reduced performance). Differences be-
tween IATEX 2¢ and KTEX2.09 are outlined in a series
of ‘guide’ files that are available in every IWTEX distribu-
tion; the most important of these files is available on the
Web as http://www.tex.ac.uk/tex-archive/macros/
latex/doc/html/usrguide/ and outlines the differences
as seen by the ordinary writer of documents and of simple
macros.

9 How should I pronounce “EBTEX(2¢)”7

Lamport never recommended how one should pronounce
ETEX, but a lot of people pronounce it ‘Lay TEX’ or per-
haps ‘Lah TEX’ (with TEX pronounced as the program
itself; see question 2).

The ‘epsilon’ in ‘TEX 2¢’ is supposed to be suggestive
of a small improvement over the old ETEX 2.09. Neverthe-
less, most people pronounce the name as ‘KTEX-two-ee’.

10 Should I use Plain TEX or BTEX?

There’s no straightforward answer to this question. Many
people swear by Plain TEX, and produce highly re-
spectable documents using it (Knuth is an example of

this, of course). But equally, many people are happy to
let someone else take the design decisions for them, ac-
cepting a small loss of flexibility in exchange for a saving
of brain power.

The arguments around this topic can provoke huge
amounts of noise and heat, without offering much by way
of light; your best bet is to find out what those around
you are using, and to go with the crowd. Later on, you
can always switch your allegiance; don’t bother about it.

If you are preparing a manuscript for a publisher or
journal, ask them what markup they want before you de-
velop your own; many big publishers have developed their
own KTEX styles for journals and books, and insist that
authors stick closely to their markup.

11 How does BTEX relate to Plain TEX?

TEX is a program written in the programming language
TEX. (In the same sense, any WTEX document is also a
program, which is designed to run ‘alongside’; or ‘inside’
KTEX, whichever metaphor you prefer.)

Plain TEX is also a program written in the program-
ming language TEX.

Both exist because writing your documents in ‘raw’
TEX would involve much reinventing of wheels for every
document. They both serve as convenient aids to make
document writing more pleasant: I¥TEX is a far more ex-
tensive aid.

ITEX is close to being a superset of Plain TEX. Many
documents designed for Plain TEX will work with BTEX
with no more than minor modifications (though some will
require substantial work).

Interpretation of any (I2)TEX program involves some
data-driven elements, and I¥TEX has a wider range of such
elements than does Plain TEX. As a result, the mapping
from BTEX to Plain TEX is far less clear than that in the
other direction.

12 What is ConTEXt?

ConTgXt (see http://www.ntg.nl/context/) is a macro
package developed by Hans Hagen, originally to serve
the needs of the Dutch firm, Pragma. It was designed
with the same general-purpose aims as BTEX, but (be-
ing younger) reflects much more recent thinking about
the structure of markup, etc. In particular, ConTEXt can
customise its markup to an author’s language (customis-
ing modules for Dutch, English and German are provided,
at present).

ConTEXt is well integrated, in all of its structure, with
the needs of hypertext markup, and in particular with
the facilities offered by PDFTEX (see question 238). The
default installation employs a version of TEX built with
both the PDFTEX and e-TEX (see question 237) exten-
sions, and makes good use of both.

ConTEXt doesn’t yet have quite such a large developer
community as does BTEX, but those developers who are
active seem to have prodigious energy.

ConTgXt distribution: macros/context

13 What are the AMS packages (AMS-TEX,
etc.)?

AMS-TEX is a TEX macro package, originally written

by Michael Spivak for the American Mathematical So-

ciety (AMS) during 1983-1985. It is described in “The
Joy of TEX” by Michael D. Spivak (second edition, AMS,
1990, ISBN 0-821-82997-1). It is based on Plain TgX, and
provides many features for producing more professional-
looking maths formulas with less burden on authors. It
pays attention to the finer details of sizing and position-
ing that mathematical publishers care about. The aspects
covered include multi-line displayed equations, equation
numbering, ellipsis dots, matrices, double accents, multi-
line subscripts, syntax checking (faster processing on ini-
tial error-checking TEX runs), and other things.

As KETEX increased in popularity, authors asked to
submit papers to the AMS in IMTEX, and so the AMS de-
veloped ApS-IMTEX, which is a collection of IATEX pack-
ages and classes that offer authors most of the function-
ality of ApS-TEX.

AMS-TEX distribution: macros/amstex

AMS-BTEX distribution:

macros/latex/required/amslatex

14 What is Eplain?

The Eplain macro package expands on and extends the
definitions in Plain TEX. Eplain is not intended to pro-
vide “generic typesetting capabilities”, as do ETEX or
Texinfo (see question 16). Instead, it provides definitions
that are intended to be useful regardless of the high-level
commands that you use when you actually prepare your
manuscript.

For example, Eplain does not have a command
\section, which would format section headings in an
“appropriate” way, as ITEX’s \section. The philosophy
of Eplain is that some people will always need or want
to go beyond the macro designer’s idea of “appropriate”.
Such canned macros are fine — as long as you are will-
ing to accept the resulting output. If you don’t like the
results, or if you are trying to match a different format,
you are out of luck.

On the other hand, almost everyone would like ca-
pabilities such as cross-referencing by labels, so that you
don’t have to put actual page numbers in the manuscript.
Karl Berry, the author of Eplain, says he is not aware of
any generally available macro packages that do not force
their typographic style on an author, and yet provide such
capabilities.

Eplain distribution: macros/eplain

15 What is Lollipop?

Lollipop is a macro package written by Victor Eijkhout;
it was used in the production of his book “TgX by Topic”
(see question 27). The manual says of it:

Lollipop is ‘TEX made easy’. Lollipop is a
macro package that functions as a toolbox for
writing TEX macros. It was my intention to
make macro writing so easy that implement-
ing a fully new layout in TEX would become
a matter of less than an hour for an average
document, and that it would be a task that
could be accomplished by someone with only
a very basic training in TEX programming.

Lollipop is an attempt to make structured text
formatting available for environments where
previously only WYSIWYG packages could be
used because adapting the layout is so much
more easy with them than with traditional
TEX macro packages.

The manual goes on to talk of ambitions to “capture
some of the WTEX market share”; it’s a very witty pack-
age, but little sign of it taking over from KTEX is de-
tectable... An article about Lollipop appeared in TUG-
boat 13(3).

Lollipop distribution: macros/lollipop
16 What is Texinfo?

Texinfo is a documentation system that uses one source
file to produce both on-line information and printed out-
put. So instead of writing two different documents, one
for the on-line help and the other for a typeset manual,
you need write only one document source file. When the
work is revised, you need only revise one document. You
can read the on-line information, known as an “Info file”,
with an Info documentation-reading program. By con-
vention, Texinfo source file names end with a .texi or
.texinfo extension. You can write and format Texinfo
files into Info files within GNU emacs, and read them us-
ing the emacs Info reader. You can also format Texinfo
files into Info files using makeinfo and read them using
info, so you're not dependent on emacs. The distribu-
tion includes a Perl script, texi2html, that will convert
Texinfo sources into HTML.

Texinfo distribution: macros/texinfo/texinfo

17 If TEX is so good, how come it’s free?

It’s free because Knuth chose to make it so. He is never-
theless apparently happy that others should earn money
by selling TEX-based services and products. While several
valuable TEX-related tools and packages are offered sub-
ject to restrictions imposed by the GNU General Public
Licence (‘Copyleft’), TEX itself is not subject to Copyleft.

There are commercial versions of TEX available; for
some users, it’s reassuring to have paid support. What is
more, some of the commercial implementations have fea-
tures that are not available in free versions. (The reverse
is also true: some free implementations have features not
available commercially.)

This FAQ concentrates on ‘free’ distributions of TEX,
but we do at least list the major vendors (see question 55).

18 What is the future of TEX?

Knuth has declared that he will do no further develop-
ment of TEX; he will continue to fix any bugs that are
reported to him (though bugs are rare). This decision
was made soon after TEX version 3.0 was released; at
each bug-fix release the version number acquires one more
digit, so that it tends to the limit 7 (at the time of writing,
Knuth’s latest release is version 3.14159). Knuth wants
TEX to be frozen at version m when he dies; thereafter,
no further changes may be made to Knuth’s source. (A
similar rule is applied to METAFONT; its version number
tends to the limit e, and currently stands at 2.718.)

There are projects (some of them long-term projects:
see, for example, question 235) to build substantial new
macro packages based on TEX. For the even longer term,
there are various projects to build a successor to TEX; see
questions 236 and 237.

19 Reading (I)TEX files

So you’ve been sent a TEX file: what are you going to
do with it? Well, the good news is that TEX systems are
available, free, for most sorts of computer; the bad news
is that you need a pretty complete TEX system even to
read a single file, and complete TEX systems are pretty
large.

TEX is a typesetting system that arose from a publish-
ing project (see question 1), and its basic source is avail-
able free from its author. However, at its root, it is just
a typesetting engine: even to view or to print the typeset
output, you will need anciliary programs. In short, you
need a TEX distribution — a collection of TEX-related
programs tailored to your operating system: for details
of the sorts of things that are available, see question 53
or 55 (for commercial distributions).

But beware — TEX makes no attempt to look like
the sort of WYSIWYG system you're probably used to (see
question 20): while many modern versions of TEX have a
compile-view cycle that rivals the best commercial word
processors in its responsiveness, what you type is usually
mark-up, which typically defines a logical (rather than a
visual) view of what you want typeset.

However, in this context markup proves to be a bless-
ing in disguise: a good proportion of most TEX documents
is immediately readable in an ordinary text editor. So,
while you need to install a considerable system to attain
the full benefits of the TEX document that you were sent,
the chances are you can understand quite a bit of it with
nothing more than the ordinary tools you already have
on your computer.

20 Why is TEX not a wysiwyg system?
WYsSIwYG is a marketing term (“What you see is what
you get”) for a particular style of text processor. WysI-
WYG systems are characterised by two principal claims:
that you type what you want to print, and that what you
see on the screen as you type is a close approximation to
how your text will finally be printed.

The simple answer to the question is, of course, that
TEX was conceived long before the marketing term, at a
time when the marketing imperative wasn’t perceived as
significant. However, that was a long time ago: why has
nothing been done with the “wonder text processor” to
make it fit with modern perceptions?

There are two answers to this. First, the simple
“things have been done” (but they’ve not taken over the
TEX world); and second, “there are philosophical reasons
why the way TEX has developed is ill-suited to the wysi-
WYG style”.

A celebrated early approach at “wysIwyG using TpX”
was the VorTEX project: a pair of (early) Sun worksta-
tions worked in tandem, one handling the user interface
while the other beavered away in the background typeset-
ting the result. VorTEX was quite impressive for its time,
but the two workstations combined had hugely less power

than the average sub-thousand dollar Personal Computer
nowadays, and its code has not proved portable (it never
even made the last ‘great’ TEX version change, at the turn
of the 1990s, to TEX version 3). Modern systems that
are similar in their approach are Lightning Textures (an
extension of Blue Sky’s original TEX system for the Mac-
intosh), and Scientific Word (which can also cooperate
with a computer algebra system); both these systems are
commercially available (see question 55). The free LyX
system works with many free distributions of TEX and
also offers a good approximation to WYSIWYG behaviour.

Nevertheless, many TEX users prefer the behaviour
of a slick shell (or powerful editor) coupled with a
fast TEX system: in the tedious arguments which rage
on newsgroup comp.text.tex about which system is
“best”, the principle contenders seem to be emacs and
winedt; this author (who seldom uses anything other than
emacs, through a combination of historical accident and
lethargy) is ill-qualified to judge the merits of other sys-
tems.

The TEX world has taken a long time to latch onto the
idea of WysIwya. Apart from simple arrogance (“we'’re
better, and have no need to consider the petty doings of
the commercial word processor market”), there is a real
conceptual difference between the word processor model
of the world and the model IXTEX and ConTEXt employ —
the idea of “markup”. “Pure” markup expresses a logical
model of a document, where every object within the doc-
ument is labelled according to what it is rather than how
it should appear: appearance is deduced from the prop-
erties of the type of object. Properly applied, markup
can provide valuable assistance when it comes to re-use
of documents.

Established wysSIwyG systems find the expression of
this sort of structured markup difficult; however, markup
1s starting to appear in the lists of the commercial world’s
requirements, for two reasons. First, an element of
markup helps impose style on a document, and com-
mercial users are increasingly obsessed with uniformity of
style; and second, the increasingly pervasive use of XML-
derived document archival formats demands it. The same
challenges must needs be addressed by programs such as
LyX, so we are observing a degree of confluence of the
needs of the two communities: interesting times may be
ahead of us.

21 TgX User Groups

There has been a TEX User Group since very near the
time TEX first appeared. That first group, TUG, is still
active and its journal TUGboat continues in publication
(4 issues a year) with articles about TEX, METAFONT and
related technologies, and about document design, pro-
cessing and production. TUG holds a yearly conference,
whose proceedings are published in TUGboat.

TUG’s web site is a valuable resource for all sorts of
TEX-related matters, such as details of TEX software, and
lists of TEX vendors and TEX consultants. Back articles
from TUGboat are slowly (subject to copyright issues,
etc.) making their way to the site, too.

3That’s ‘Starting from Square One’

Some time ago, TUG established a “technical council”,
whose task was to oversee the development of TEXnical
projects. Most such projects nowadays go on their way
without any support from TUG, but TUG’s web site
lists its Technical Working Groups (TWGs: see http:
//wwu.tug.org/twg.html).

TUG has a reasonable claim to be considered a world-
wide organisation, but there are many national and re-
gional user groups, too; TUG’s web site maintains a list
of “local user groups” (LUGs: see http://www.tug.org/
lugs.html).

Contact TUG itself via:

TEX Users Group

1466 NW Front Avenue, Suite 3141
Portland, OR 97209

USA

Tel: +1 503-223-9994

Fax: 41 503-223-3960
Email: tug@mail.tug.org
Web: http://www.tug.org/

C Documentation and Help

22 Books on TEX and its relations

While Knuth’s book is the definitive reference for TEX,
there are other books covering TEX:

The TgXbook by Donald Knuth (Addison-Wesley, 1984,
ISBN 0-201-13447-0, paperback ISBN 0-201-13448-
9)

A Beginner’s Book of TgX by Raymond Seroul and Sil-
vio Levy, (Springer Verlag, 1992, ISBN 0-387-97562-
4)

TEX by Example: A Beginner’s Guide by Arvind Borde
(Academic Press, 1992, ISBN 0-12-117650-9 — now
out of print)

Introduction to TgX by Norbert Schwarz (Addison-
Wesley, 1989, ISBN 0-201-51141-X — now out of
print)

A Plain TgX Primer by Malcolm Clark (Oxford Univer-
sity Press, 1993, ISBNs 0-198-53724-7 (hardback)
and 0-198-53784-0 (paperback))

TgX by Topic by Victor Eijkhout (Addison-Wesley, 1992,
ISBN 0-201-56882-9 — now out of print, but see
question 27)

TgX for the Beginner by Wynter Snow (Addison-Wesley,
1992, ISBN 0-201-54799-6)

TEX for the Impatient by Paul W. Abrahams, Karl Berry
and Kathryn A. Hargreaves (Addison-Wesley, 1990,
ISBN 0-201-51375-7)

TgX in Practice by Stephan von Bechtolsheim (Springer
Verlag, 1993, 4 volumes, ISBN 3-540-97296-X for the
set, or Vol. 1: ISBN 0-387-97595-0, Vol. 2: ISBN 0-
387-97596-9, Vol. 3: ISBN 0-387-97597-7, and Vol. 4:
ISBN 0-387-97598-5)

TEX: Starting from 3 by Michael Doob (Springer Ver-
lag, 1993, ISBN 3-540-56441-1 — now out of print)

The Advanced TgXbook by David Salomon (Springer Ver-
lag, 1995, ISBN 0-387-94556-3)

A collection of Knuth’s publications about typography
has recently been published:

Digital Typography by Donald Knuth (CSLI and Cam-
bridge University Press, 1999, ISBN 1-57586-011-2,
paperback ISBN 1-57586-010-4).

and in late 2000, a “Millennium Boxed Set” of all 5
volumes of Knuth’s “Computers and Typesetting” series
(about TEX and METAFONT) was published by Addison
Wesley:

Computers & Typesetting, Volumes A-FE Bozxed Set by
Donald Knuth (Addison-Wesley, 2001, ISBN 0-201-
73416-8).

For BTEX, see:

ETEX, a Document Preparation System by Leslie Lam-
port (second edition, Addison Wesley, 1994, ISBN 0-
201-52983-1)

A guide to BATEX Helmut Kopka and Patrick W. Daly
(third edition, Addison-Wesley, 1998, ISBN 0-201-
39825-7)

The RATEX Companion by Michel Goossens, Frank Mit-
telbach, and Alexander Samarin (Addison-Wesley,
1993, ISBN 0-201-54199-8)

The BTEX Graphics Companion: Illustrating documents
with TgX and PostScript by Michel Goossens, Se-
bastian Rahtz and Frank Mittelbach (Addison-
Wesley, 1997, ISBN 0-201-85469-4)

The ATEX Web Companion Integrating TpX, HTML and
XML by Michel Goossens and Sebastian Rahtz
(Addison-Wesley, 1999, ISBN 0-201-43311-7)

TEX Unbound: EMTEX and TEX strategies for fonts, graph-
ics, and more by Alan Hoenig (Oxford University
Press, 1998, ISBN 0-19-509685-1 hardback, ISBN 0-
19-509686-X paperback)

Math into BTEX: An Introduction to ETEX and AMS-
I'TEX by George Gritzer (third edition Birkhauser
and Springer Verlag, 2000, ISBN 0-8176-4431-9,
ISBN 3-7643-4131-9)

A list of errata for the first printing is available
from: http://www.springer-ny.com/catalog/
np/jan99np/0-387-98708-8 . html

First Steps in ' TEX by George Grétzer (Birkh&user,
1999, ISBN 0-8176-4132-7)

BTEX: Line by Line: Tips and Techniques for Document
Processing by Antoni Diller (second edition, John
Wiley & Sons, 1999, ISBN 0-471-97918-X)

BTEX for Linux: A Vade Mecum by Bernice Sacks Lip-
kin (Springer-Verlag, 1999, ISBN 0-387-98708-8,
second printing)

A sample of George Gratzer’'s book, in Adobe Acrobat
format, is also available (info/mil/mil.pdf).

Example files for the BTEX Graphics and Web Com-
panions are available in info/lgc (Graphics) and info/
lwc (Web). Example files for George Gréatzer’s ‘First
Steps’ are available in info/FirstSteps

The list for METAFONT is rather short:

The METAFONTbook by Donald Knuth (Addison Wesley,
1986, ISBN 0-201-13445-4, ISBN 0-201-52983-1 pa-
perback)

Alan Hoenig’s ‘TEX Unbound’ includes some discussion
and examples of using METAFONT.

This list only covers books in English: UK TUG can-
not hope to maintain a list of books in languages other
than our own.

23 Books on Type

The following is a partial listing of books on typography
in general. Of these, Bringhurst seems to be the one most
often recommended.

The Elements of Typographic Style by Robert Bringhurst
(Hartley & Marks, 1992, ISBN 0-88179-033-8)

Finer Points in the Spacing & Arrangement of Type by
Geoffrey Dowding (Hartley & Marks, 1996, ISBN 0-
88179-119-9)

The Thames & Hudson Manual of Typography by Ruari
McLean (Thames & Hudson, 1980, ISBN 0-500-
68022-1)

The Form of the Book by =~ Jan Tschichold (Lund
Humphries, 1991, ISBN 0-85331-623-6)

Type € Layout by Colin Wheildon (Strathmore Press,
1995, ISBN 0-9624891-5-8)

The Design of Books by Adrian Wilson (Chronicle
Books, 1993, ISBN 0-8118-0304-X)

There are many catalogues of type specimens but the
following books provide a more interesting overall view of
types in general and some of their history.

Alphabets Old & New by Lewis F. Day (Senate, 1995,
ISBN 1-85958-160-9)

An Introduction to the History of Printing Types by Ge-
offrey Dowding (British Library, 1998, UK ISBN 0-
7123-4563-9; USA ISBN 1-884718-44-2)

The Alphabet Abecedarium by Richar A. Firmage (David
R. Godine, 1993, ISBN 0-87923-998-0)

The Alphabet and Elements of Lettering by
Goudy (Dover, 1963, ISBN 0-486-20792-7)

Anatomy of a Typeface by Alexander Lawson (David
R. Godine, 1990, ISBN 0-87923-338-8)

A Tally of Types by Stanley Morison (David R. Godine,
1999, ISBN 1-56792-004-7)

Counterpunch by Fred Smeijers (Hyphen, 1996, ISBN 0-
907259-06-5)

Treasury of Alphabets and Lettering by Jan Tschichold
(W. W. Norton, 1992, ISBN 0-393-70197-2)

Frederick

A Short History of the Printed Word by Warren Chap-
pell and Robert Bringhurst (Hartley & Marks, 1999,
ISBN 0-88179-154-7)

The above lists are limited to books published in
English. Typographic styles are somewhat language-
dependent, and similarly the ‘interesting’ fonts depend
on the particular writing system involved.

24 Where to find FAQs

Bobby Bodenheimer’s article, from which this FAQ was
developed, used to be posted (nominally monthly) to
newsgroup comp.text.tex and cross-posted to news-
groups news.answers and comp.answers. The (long ob-
solete) last posted copy of that article is kept on CTAN for
auld lang syne; it is no longer kept in the news.answers
archives.

A version of the present FAQ may be browsed via the
World-Wide Web, at URL http://www.tex.ac.uk/faq,
and its sources are available from CTAN.

Another excellent information source, available in En-
glish, is the (I#)TEX navigator (see http://tex.loria.
fr).

Both the Francophone TEX usergroup Gutenberg and
the Czech/Slovak usergroup CS-TUG have published
translations of this FAQ, with extensions appropriate to
their languages.

Other non-English FAQs are available:

German Posted regularly to de.comp.tex, and archived
on CTAN; the FAQ also appears at http://www.
dante.de/faq/de-tex-faq/

French Posted regularly to fr.comp.text.tex, and

archived on CTAN.
Spanish See http://apolo.us.es/CervanTeX/FAQ/
Czech See http://www.fi.muni.cz/cstug/csfaq/

Dante FAQ: usergrps/dante/de-tex-faq
French FAQ: help/LaTeX-FAQ-francaise
Sources of this FAQ: help/uk-tex-faq
Obsolete comp. text.tex FAQ: obsolete/help

25 Where to get help

First ... read any FAQ you can find. (Which is what
you're doing now, isn’t it?)

An ambitious FAQ-like project to collect all TEX-
related information into one place is under way at http:
//www.ctv.es/USERS/irmina/TeEncontreX.html; as
with any FAQ, this project needs the support and help
of all users — as yet, it carries an incomplete set of an-
swers to potential questions. The sources of the package
(including a complete set of html files) are available:
info/spanish/TeEncontreX

The tutorials and other on-line documentation (see
question 27) can get you started but for more in-depth
understanding you should get and read at least one of the
many good books on the subject (see question 22). The
definitive source for (I8)TEX is the source code itself, but
that is not something to be approached lightly (if at all).

If you are seeking a particular package or program,
look on your own system first: you might already have

10

it — the better TEX distributions contain a wide range of
supporting material.

If you have access to the internet, and in particular
newsgroups, then (IM)TEX discussions, including META-
FONT and MetaPost, are on comp.text.tex. It is best to
spend a little time familiarising yourself with the current
threads before asking a question. The group is normally
very responsive but asking a question that has just been
answered is likely to dampen people’s enthusiasm to help
you.

http://groups.google.com/ archives Usenet news
discussions, and comp.text.tex may be found there.
Google’s archive now goes impressively far back in time
(before comp.text.tex even existed), and it is a power-
ful resource for tracking down that recommendation that
no-one can now remember. Google also now allows you
to post your own questions or followups.

The few people who can’t use the World Wide Web,
can’t access Usenet news, but can use electronic mail can
seek help through mailing lists.

The TgXhax digest is nowadays operated as a moder-
ated “MailMan” mailing list: its members now have the
option of receiving messages in ‘real time’, and answers
are more quickly forthcoming than ever they were in the
past. Subscribe via http://lists.nottingham.ac.uk/
mailman/listinfo/texhax; past digests are available on
CTAN.

Many mailing lists exist that cover some small part
of the TEX arena. A good source of pointers is http:
//www.tug.org/

Announcements of TgX-related installations on
the CTAN archives are sent to the mailing list
ctan-ann. Subscribe to the list by sending a mes-
sage ‘subscribe ctan-ann <your email address>’ to
majordomo@dante.de

Issues related to METAFONT (and, increasingly,
MetaPost) are discussed on the metafont mailing list;
subscribe by sending a message ‘subscribe metafont
<your mame>’ to listserv@ens.fr

A few other TEX-related lists may be accessed via
listserv@urz.uni-heidelberg.de. Send a message
containing the line ‘help’ to this address, or browse
http://listserv.uni-heidelberg.de/cgi-bin/wa

TpXhaz digests: Browse digests/texhax

26 How to ask a question

You want help from the community at large; you’ve de-
cided where you’re going to ask your question (see ques-
tion 25), but how do you phrase it?

Excellent “general” advice (how to ask questions of
anyone) is contained in Eric Raymond’s article on the
topic (see http://www.tuxedo.org/ esr/faqs/smart-
questions.html). Eric’s an extremely self-confident per-
son, and this comes through in his advice; but his guide-
lines are very good, even for us in the un-self-confident
majority. It’s important to remember that you don’t have
a right to advice from the world, but that if you express
yourself well, you will usually find someone who will be
pleased to help.

So how do you express yourself in the (I2)TEX world?
There aren’t any comprehensive rules, but a few guide-
lines may help in the application of your own common
sense.

1. Make sure you’re asking the right people. Don’t

ask in a TEX forum about printer device drivers for
the Foobar operating system. Yes, TEX users need
printers, but no, TEX users will typically not be
Foobar systems managers.
Similarly, avoid posing a question in a language
that the majority of the group don’t use: post
in Ruritanian to de.comp.text.tex and you may
have a long wait before a German- and Ruritanian-
speaking TEX expert notices your question.

2. If you need to know how to do something, make
clear what your environment is. “I want to do x in
Plain TEX”, or “I want to do y in I¥TEX running
the boggle class”.

3. If something’s going wrong, pretend you’re submit-
ting a ITEX bug report (see question 243), and try
to generate a minimum failing example. If your ex-
ample needs your local xyzthesis class, or some other
resource not generally available, be sure to include
a pointer to how the resource can be obtained.

4. Be as succinct as possible. Your helpers probably
don’t need to know why you're doing something,
just what you're doing and where the problem is.

27 (IM)TEX Tutorials, etc.

Some very fine tutorials have been written, over the years.
Michael Doob’s splendid ‘Gentle Introduction’ to Plain
TEX has been stable for a very long time.

More dynamic is Tobias Oetiker’s ‘(Not so) Short In-
troduction to TEX 2¢’, which is regularly updated, as
people suggest better ways of explaining things, etc. The
introduction has been translated into several languages
other than its original English.

Harvey Greenberg’s ‘Simplified Introduction to IXTEX’
was written for a lecture course, and is available on CTAN
(in PostScript only, unfortunately).

Peter Flynn’s ‘Beginner’s BTEX’ (see http://wuw.
silmaril.ie/documents/beginlatex.pdf) isn’t yet
(April 2002) complete, but is another pleasing read. It
too started as course material.

The AMS publishes a “Short Math Guide for XTEX”,
which is available (in several formats) via http://www.
ams.org/tex/short-math-guide.html

Reference material is somewhat more difficult to come
by. A sterling example is set by David Bausum’s list
of TEX primitives (see http://www.tug.org/utilities/
plain/cseq.html).

Some university departments make their local docu-
mentation available on the web. Most straightforwardly,
there’s the simple translation of existing documentation
into HTML, for example the INFO documentation of the
(IM)TEX installation, of which a sample is the IXTEX doc-
umentation available at http://www.tac.dk/cgi-bin/
info2www? (latex)

More ambitiously, some departments have enthusiastic
documenters who make public record of their (I8)TEX sup-
port. For example, Tim Love (of Cambridge University

11

Engineering Department) maintains his deparment’s ex-
cellent pages http://www-h.eng.cam.ac.uk/help/tpl/
textprocessing/

Another summary by command (somewhat akin to
David Basum’s work for Plain TEX) is to be found at
http://www.giss.nasa.gov/latex/1tx-2.html

People have long argued for (I4)TEX books to be
made available on the web, and Victor Eijkhout’s excel-
lent “TEX by Topic” (previously published by Addison-
Wesley, but long out of print) was offered in this way
a Christmas 2001. The book is currently available on a
shareware basis at http://www.eijkhout.net/tbt/; it’s
not a beginner’s tutorial but it’s a fine reference (and well
worth the suggested contribution).

Gentle Introduction: info/gentle/gentle.pdf

Not so Short Introduction:
info/lshort/english/1short.pdf

Simplified 'TEX: info/simplified-latex/latex.ps

28 Learning to write R'TEX classes and packages

There’s nothing particularly magic about the commands
you use when writing a package, so you can sim-
ply bundle up a set of ITEX \(re)newcommand and
\ (re)newenvironment commands, put them in a file
package.sty and you have a package.

However, any but the most trivial package will re-
quire rather more sophistication. Some details of KTEX
commands for the job are to be found in ‘KWITEX2¢ for
class and package writers’ (http://www.tex.ac.uk/tex-
archive/macros/latex/doc/html/clsguide: the BWTEX
source of this document appears in the TEX distribu-
tion). Beyond this, a good knowledge of TEX itself is
valuable. With such knowledge it is possible to use the
documented source of IATEX as reference material (dedi-
cated authors will acquaint themselves with the source as
a matter of course). A complete set of the documented
source of ATEX may be prepared by processing the file
source2e.tex in the BTEX distribution.

Writing good classes is not easy; it’s a good idea
to read some established ones (classes.dtx, for exam-
ple, produces the standard classes other than letter, and
may itself be formatted with IATEX). Classes that are
not part of the distribution are commonly based on ones
that are, and start by loading the standard class with
\LoadClass — an example of this technique may be seen
in ltxquide.cls

classes.dtx: macros/latex/base/classes.dtx
ltzguide.cls: macros/latex/base/ltxguide.cls

sourcele. ter: macros/latex/base/source2e.tex

29 METAFONT and MetaPost Tutorials

Unfortunately there appear to be no tutorials on how to
use METAFONT, except for the information provided by
Knuth. There are, though, a couple of articles on how to
run both METAFONT and MetaPost.

Geoffrey Tobin has provided METAFONT for Begin-
ners (see question 78). This describes how the META-
FONT system works and how to avoid some of the poten-
tial pitfalls.

Peter Wilson’s Some Ezxperiences in Running META-
FONT and MetaPost offers the benefit of Peter’s experi-
ence (he has designed a number of ‘historical’ fonts us-
ing METAFONT). On the METAFONT side the article is
more geared towards testing and installing new META-
FONT fonts than on the system, while on the other side it
describes how to use MetaPost illustrations in ITEX and
PDFETEX documents, with an emphasis on how to use
appropriate fonts for any text or mathematics.

Hans Hagen (of ConTgXt fame) offers a MetaPost
tutorial called MetaFun (which admittedly concentrates
on the use of MetaPost with in ConTgXt). It may
be found on his company’s MetaPost page (see http:
//www.ntg.nl/context/metapost.htm).

Beginners’ guide: info/metafont-for-beginners.tex

Peter Wilson’s “experiences”: info/metafp.ps
(PostScript) or info/metafp.pdf (PDF format)

30 BibTEX Documentation

BIBTEX, a program originally designed to produce bib-
liographies in conjunction with ITEX, is explained in
Section 4.3 and Appendix B of Leslie Lamport’s KTEX
manual (see question 22). The document “BIBTEXing”,
contained in the file btxdoc.tex, gives a more complete
description. The IATEX Companion (see question 22) also
has information on BIBTEX and writing BIBTEX style
files.

The document “Designing BIBTEX Styles”, contained
in the file btxhak.tex, explains the postfix stack-based
language used to write BIBTEX styles (.bst files). The file
btxbst.doc is the template for the four standard styles
(plain, abbrv, alpha, unsrt). It also contains their doc-
umentation. The complete BIBTEX documentation set
(including the files above) is available on CTAN.

There is a Unix BIBTEX man page in the web2c¢ pack-
age (see question 53). Any copy you may find of a man
page written in 1985 (before “BIBTEXing” and “Design-
ing BIBTEX Styles” appeared) is obsolete, and should be
thrown away.*

BIBTEX documentation: biblio/bibtex/distribs/doc
31 Where can I find the symbol for...

There is a wide range of symbols available for use with
TEX, most of which are not shown (or even mentioned)
in () TEX books. The Comprehensive IATEX Symbol List
(by Scott Pakin et al.) illustrates over 2000 symbols, and
details the commands and packages needed to produce
them.

Other questions in this FAQ offer specific help on kinds
of symbols:

e Script fonts for mathematics (question 180)

e Fonts for the number sets (question 179)

e Typesetting the principal value integral (ques-
tion 182)

Symbol List: Browse info/symbols/comprehensive;
there are processed versions in both PostScript
and PDF forms for both A4 and letter paper.

32 The P[CTEX manual

PICTEX is a set of macros by Michael Wichura for draw-
ing diagrams and pictures. The macros are freely avail-
able; however, the P[CTEX manual itself is not free. Un-
fortunately, TUG is no longer able to supply copies of
the manual (as it once did), and it is now available
only through Personal TEX Inc, the vendors of PCTEX
(http://www.pctex.com/). The manual is not available
electronically.

pictex: graphics/pictex

D Bits and pieces of TEX

33 What is a DVI file?

A DVI file (that is, a file with the type or extension
.dvi) is TEX’s main output file, using TEX in its broadest
sense to include ITEX, etc. ‘DVI’ is supposed to be an
acronym for DeVice-Independent, meaning that the file
can be printed on almost any kind of typographic output
device. The DVI file is designed to be read by a driver (see
question 34) to produce further output designed specifi-
cally for a particular printer (e.g., a LaserJet) or to be
used as input to a previewer for display on a computer
screen. DVI files use TEX’s internal coding; a TEX input
file should produce the same DVI file regardless of which
implementation of TEX is used to produce it.

A DVI file contains all the information that is needed
for printing or previewing except for the actual bitmaps or
outlines of fonts, and possibly material to be introduced
by means of \special commands (see question 38).

The canonical reference for the structure of a DVI file
is the source of dwitype.

dvitype: systems/knuth/texware/dvitype.web

34 What is a driver?

A driver is a program that takes as input a DVI file (see
question 33) and (usually) produces a file that can be sent
to a typographic output device, called a printer for short.

A driver will usually be specific to a particular printer,
although any PostScript printer ought to be able to print
the output from a PostScript driver.

As well as the DVI file, the driver needs font infor-
mation. Font information may be held as bitmaps or as
outlines, or simply as a set of pointers into the fonts that
the printer itself ‘has’. Each driver will expect the font
information in a particular form. For more information
on the forms of fonts, see questions 35, 36, 37 and 82.

40r submitted for inclusion in a museum dedicated to the history of computing: the stricture was conceivably reasonable in the first version

of this FAQ...

35 What are PK files?

PK files (packed raster) contain font bitmaps. The out-
put from METAFONT (see question 78) includes a generic
font (GF) file and the utility gftopk produces the PK file
from that. There are a lot of PK files, as one is needed for
each font, that is each magnification (size) of each design
(point) size for each weight for each family. Further, since
the PK files for one printer do not necessarily work well
for another, the whole set needs to be duplicated for each
printer type at a site. As a result, they are often held in
an elaborate directory structure, or in ‘font library files’,
to regularise access.

36 What are TFM files?

TFM stands for TEX font metrics, and TFM files hold in-
formation about the sizes of the characters of the font in
question, and about ligatures and kerns within that font.
One TFM file is needed for each font used by TEX, that
is for each design (point) size for each weight for each
family; one TFM file serves for all magnifications, so that
there are (typically) fewer TFM files than there are PK
files. The important point is that TFM files are used by
TEX (IATEX, etc.), but are not, generally, needed by the
printer driver.

37 Virtual fonts

Virtual fonts for TEX were first implemented by David
Fuchs in the early days of TgX, but for most people
they started when Knuth redefined the format, and wrote
some support software, in 1989 (he published an article in
TUGboat at the time, and a copy is available on CTAN).
Virtual fonts provide a way of telling TEX about some-
thing more complicated than just a one-to-one character
mapping. The entities you define in a virtual font look like
characters to TEX (they appear with their sizes in a font
metric file), but the DVI processor may expand them to
something quite different. You can use this facility just to
remap characters, to make a composite font with glyphs
drawn from several sources, or to build up an effect in ar-
bitrarily complicated ways — a virtual font may contain
anything which is legal in a DVI file. In practice, the most
common use of virtual fonts is to remap PostScript fonts
(see question 84) or to build ‘fake’ maths fonts.

It is important to realise that TEX itself does not see
virtual fonts; for every virtual font read by the DVI driver
there is a corresponding TFM file read by TEX. Virtual
fonts are normally created in a single ASCII vpl (Virtual
Property List) file, which includes both sets of informa-
tion. The wptovf program is then used to the create the
binary TFM and VF files. The commonest way (nowa-
days) of generating vpl files is to use the fontinst pack-
age, which is described in detail in question 84. qdtexupl
is another utility for creating ad-hoc virtual fonts.

fontinst: fonts/utilities/fontinst

Knuth on virtual fonts: info/virtual-fonts.knuth
gdtezvpl: fonts/utilities/qdtexvpl

38 \special commands

TEX provides the means to express things that device
drivers can do, but about which TgX itself knows noth-
ing. For example, TEX itself knows nothing about how to

13

include PostScript figures into documents, or how to set
the colour of printed text; but some device drivers do.

Such things are introduced to your document by
means of \special commands; all that TEX does with
these commands is to expand their arguments and then
pass the command to the DVI file. In most cases, there
are macro packages provided (often with the driver) that
provide a comprehensible interface to the \special; for
example, there’s little point including a figure if you leave
no gap for it in your text, and changing colour proves to
be a particularly fraught operation that requires real wiz-
ardry. TREX 2¢ has standard graphics and colour pack-
ages that make file inclusion, rotation, scaling and colour
via \specials all easy.

The allowable arguments of \special depend on the
device driver you’re using. Apart from the examples
above, there are \special commands in the emTEX
drivers (e.g., dvihplj, dviscr, etc.) that will draw lines at
arbitrary orientations, and commands in dvitoln03 that
permit the page to be set in landscape orientation.

39 Documented BTEX sources (.dtx files)

ETEX 2e, and many support macro packages, are now
written in a literate programming style (see question 64),
with source and documentation in the same file. This for-
mat, known as ‘doc’, was originated by Frank Mittelbach.
The documented sources conventionally have the suffix
.dtx, and should normally be stripped of documentation
before use with IMTEX. Alternatively you can run KTEX
on a .dtx file to produce a nicely formatted version of
the documented code. An installation script (with suf-
fix .ins) is usually provided, which needs the standard
BTEX 2 docstrip package (among other things, the in-
stallation process strips all the comments that make up
the documentation for speed when loading the file into a
running WTEX system). Several packages can be included
in one .dtx file, with conditional sections, and there fa-
cilities for indices of macros etc. Anyone can write .dtx
files; the format is explained in The IATEX Companion
(see question 22). There are no programs yet to assist in
composition.

.dtx files are not used by IXTEX after they have been
processed to produce .sty or .cls (or whatever) files.
They need not be kept with the working system; however,
for many packages the .dtx file is the primary source of
documentation, so you may want to keep .dtx files else-
where.

40 What are encodings?

Let’s start by defining two concepts, the character and the
glyph. The character is the abstract idea of the ‘atom’ of
a language or other dialogue: so it might be a letter in
an alphabetic language, a syllable in a syllabic language,
or an ideogram in an ideographic language. The glyph is
the mark created on screen or paper which represents a
character. Of course, if reading is to be possible, there
must be some agreed relationship between the glyph and
the character, so while the precise shape of the glyph can
be affected by many other factors, such as the capabili-
ties of the writing medium and the designer’s style, the
essence of the underlying character must be retained.

Whenever a computer has to represent characters,
someone has to define the relationship between a set of
numbers and the characters they represent. This is the
essence of an encoding: it is a mapping between a set of
numbers and a set of things to be represented.

TEX of course deals in encoded characters all the time:
the characters presented to it in its input are encoded, and
it emits encoded characters in its DVI (or PDF) output.
These encodings have rather different properties.

The TEX input stream was pretty unruly back in the
days when Knuth first implemented the language. Knuth
himself prepared documents on terminals that produced
all sorts of odd characters, and as a result TEX contains
some provision for translating the input encoding to some-
thing regular. Nowadays, the operating system translates
keystrokes into a code appropriate for the user’s language:
the encoding used is often a national or international stan-
dard, though many operating systems use “code pages”
defined by MicroSoft. These standards and code pages
often contain characters that can’t appear in the TEX
system’s input stream. Somehow, these characters have
to be dealt with — so an input character like “é” needs to
be interpreted by TEX in a way that that at least mimics
the way it interprets “\’e”.

The TEX output stream is in a somewhat different sit-
uation: characters in it are to be used to select glyphs
from the fonts to be used. Thus the encoding of the out-
put stream is notionally a font encoding (though the font
in question may be a virtual one — see question 37). In
principle, a fair bit of what appears in the output stream
could be direct transcription of what arrived in the input,
but the output stream also contains the product of com-
mands in the input, and translations of the input such as
ligatures like fi= “fi”.

Font encodings became a hot topic when the Cork en-
coding (see question 42) appeared, because of the possi-
bility of suppressing the use of \accent commands in the
output stream (and hence improving the quality of the
hyphenation of text in inflected languages, which is inter-
rupted by the \accent commands — see question 41). To
take advantage of the diacriticised characters represented
in the fonts, it is necessary to arrange that whenever the
command sequence command sequence “\’e” has been
input (explicitly, or implicitly via the sort of mapping of
input mentioned above), the character that codes the po-
sition of the “é” glyph is used.

Thus we could have the odd arrangement that the
diacriticised character in the TEX input stream is trans-
lated into TEX commands that would generate something
looking like the input character; this sequence of TEX
commands is then translated back again into a single di-
acriticised glyph as the output is created. This is in fact
precisely what the ITEX packages inputenc and fontenc
do, if operated in tandem on (most) characters in the
ISO Latin-1 input encoding and the T1 font encoding. At
first sight, it seems eccentric to have the first package do a
thing, and the second precisely undo it, but it doesn’t al-
ways happen that way: most font encodings can’t match
the corresponding input encoding nearly so well, and the
two packages provide the sort of symmetry the IMTEX sys-
tem needs.

14

41 How does hyphenation work in TEX?

Everyone knows what hyphenation is: we see it in most
books we read, and (if we’re alert) often spot ridiculous
mis-hyphenation from time to time (at one time, British
newspapers were a fertile source).

Hyphenation styles are culturally-determined, and the
same language may be hyphenated differently in differ-
ent countries — for example, even British and American
styles of hyphenation of English are very different. As a
result, a typesetting system that is not restricted to a sin-
gle language at a single locale needs to be able to change
its hyphenation rules from time to time.

TEX uses a pretty good system for hyphenation (orig-
inally designed by Frank Liang), and while it’s capable of
missing “sensible” hyphenation points, it seldom selects
grossly wrong ones. The algorithm matches candidates
for hyphenation against a set of “hyphenation patterns”.
The candidates for hyphenation must be sequences of let-
ters (or other single characters that TEX may be per-
suaded to think of as letters) — things such as TEX’s
\accent primitive interrupt hyphenation.

Sets of hyphenation patterns are usually derived from
analysis of a list of valid hyphenations (the process of
derivation, using a tool called patgen, is not ordinarily a
participatory sport).

The patterns for the languages a TEX system is go-
ing to deal with may only be loaded when the system is
installed. To change the set of languages, a partial rein-
stallation (see question 174) is necessary.

TEX provides two “user-level” commands for control
of hyphenation: \language (which selects a hyphenation
style), and \hyphenation (which gives explicit instruc-
tions to the hyphenation engine, overriding the effect of
the patterns).

The ordinary KTEX user need not worry about
\language, since it is very thoroughly managed by the
babel package; use of \hyphenation is discussed in ques-
tion 170.

42 What are the EC fonts?

A font consists of a number of glyphs. In order that the
glyphs may be printed, they are encoded (see question 40),
and the encoding is used as an index into tables within
the font. For various reasons, Knuth chose deeply eccen-
tric encodings for his Computer Modern family of fonts; in
particular, he chose different encodings for different fonts,
so that the application using the fonts has to remember
which font of the family it’s using before selecting a par-
ticular glyph.

When TEX version 3 arrived, most of the excuses for
the eccentricity of Knuth’s encodings went away, and at
TUG’s Cork meeting, an encoding for a set of 256 glyphs,
for use in TEX text, was defined. The intention was that
these glyphs should cover ‘most’ European languages that
use Latin alphabets, in the sense of including all accented
letters needed. (Knuth’s CMR fonts missed things nec-
essary for Icelandic, Polish and Sami, for example, but
the Cork fonts have them. Even Cork’s coverage isn’t
complete: it misses letters from Romanian and Welsh, at
least.) ATEX refers to the Cork encoding as T1, and pro-
vides the means to use fonts thus encoded to avoid prob-

lems with the interaction of accents and hyphenation (see
question 173).

The only METAFONT-fonts that conform to the Cork
encoding are the EC fonts. They look CM-like, though
their metrics differ from CM-font metrics in several areas.
The fonts are now regarded as ‘stable’ (in the same sense
that the CM fonts are stable: their metrics are unlikely
ever to change). Their serious disadvantages for the ca-
sual user are their size (each EC font is roughly twice the
size of the corresponding CM font), and the unavailabil-
ity of free Adobe type 1 versions, so that PDF produced
using them is inevitably bad (see question 75). (Note,
however, that several commercial suppliers offer EC or
EC-equivalent fonts in type 1 or TrueType form — see
question 55.) What’s more, until corresponding fonts for
mathematics are produced, the CM fonts must be retained
because some mathematical symbols are drawn from text
fonts in the CM encodings.

The EC fonts are distributed with a set of ‘Text Com-
panion’ (TC) fonts that provide glyphs for symbols com-
monly used in text. The TC fonts are encoded according
to the XTEX TS1 encoding, and are not viewed as ‘stable’
in the same way as are the EC fonts are.

The Cork encoding is also implemented by virtual
fonts provided in the PSNFSS system (see question 82),
for PostScript fonts, and also by the txzfonts and pzfonts
font packages (see question 86).

EC and TC fonts: fonts/ec

43 What is the TDS?

TDS stands for the TEX Directory Structure, which is a
standard way of organising all the TgX-related files on a
computer system.

Most modern distributions conform to the TDS, which
provides for both a ‘standard’ hierarchy and a ‘local’ hi-
erarchy. The TDS reserves the name texmf as the name
of the root directory (folder) of the hierarchies. Files sup-
plied as part of the distribution are put into the stan-
dard hierarchy. The location of the standard hierarchy
is system dependent, but on a Unix system it might be
at /usr/local/texmf, or /usr/local/share/texmf, or
/opt/texmf, or a similar location, but in each case the
TgX files will be under the /texmf subdirectory.

There can be multiple ‘local’ hierarchies in which ad-
ditional files can be put. In the extreme an installation
can have a local hierarchy and each user can also have
an individual local hierarchy. The location of any local
hierarchy is not only system dependent but also user de-
pendent. Again, though, all files should be put under a
local /texmf directory.

TDS specification: tds/draft-standard/tds-0.9996

44 What is “Encapsulated PostScript”

PostScript has over the years become a lingua franca
of powerful printers; since PostScript is also a powerful
graphical programming language, it is commonly used as
an output medium for drawing (and other) packages.
However, since PostScript is such a powerful language,
some rules need to be imposed, so that the output draw-
ing may be included in a document as a figure without

15

“leaking” (and thereby destroying the surrounding docu-
ment, or failing to draw at all).

Appendix H of the PostScript Language Reference
Manual (second and subsequent editions), specifies a set
of rules for PostScript to be used as figures in this way.
The important features are:

e certain “structured comments” are required; impor-
tant ones are the identification of the file type, and
information about the “bounding box” of the figure
(i.e., the minimum rectangle enclosing it);

e some commands are forbidden — for example, a
showpage command will cause the image to disap-
pear, in most TEX-output environments; and

e “preview information” is permitted, for the benefit
of things such as word processors that don’t have
the ability to draw PostScript in their own right —
this preview information may be in any one of a
number of system-specific formats, and any viewing
program may choose to ignore it.

A PostScript figure that conforms to these rules is said to
be in “Encapsulated PostScript” format. Most (I)TEX
packages for including PostScript are structured to use
Encapsulated PostScript; which of course leads to much
hilarity as exasperated (I&)TEX users struggle to cope with
the output of drawing software whose authors don’t know
the rules.

E Acquiring the Software

45

To aid the archiving and retrieval of of TEX-related files,
a TUG working group developed the Comprehensive TEX
Archive Network (CTAN). Each CTAN site has identi-
cal material, and maintains authoritative versions of its
material. These collections are extensive; in particular,
almost everything mentioned in this FAQ is archived at
the CTAN sites (see the lists of software at the end of the
questions).

The CTAN sites are currently dante.ctan.org
(Mainz, Germany), cam.ctan.org (Cambridge, UK) and
tug.ctan.org (Colchester, Vermont, USA). The organ-
isation of TEX files on all CTAN sites is identical and
starts at tex-archive/. Each CTAN node may also
be accessed via the Web at URLs http://www.dante.
de/tex-archive, http://wuw.tex.ac.uk/tex-archive
and http://www.ctan.org/tex-archive respectively;
not all CTAN mirrors are Web-accessible. As a matter
of course, to reduce network load, please use the CTAN
site or mirror closest to you. A complete and current
list of CTAN sites and known mirrors can be obtained
by using the finger utility on ‘user’ ctan@cam.ctan.org,
ctan@dante.ctan.org or ctan@tug.ctan.org; it is also
available as file CTAN.sites

For details of how to find files at CTAN sites, see ques-
tions 49 (searching by ftp) and 50 (Web searching).

The email servers ftpmail@dante.ctan.org and
ftpmail@tug.ctan.org provide an ftp-like interface
through mail. Send a message containing just the line
‘help’ to your nearest server, for details of use.

Repositories of TEX material

The TEX user who has no access to any sort of net-
work may buy a copy of the archive on CD-ROM (see
question 52).

46 What’s the CTAN nonfree tree?

The CTAN archives are currently restructuring their hold-
ings so that files that are ‘not free’ are held in a sep-
arate tree. The definition of what is ‘free’ (for this
purpose) is influenced by, but not exactly the same as
the Debian Free Software Guidelines (DFSG: see http:
//www.debian.org/social_contract#guidelines).

Material is placed on the nonfree tree if it is not
freely-usable (e.g., if the material is shareware, commer-
cial, or if its usage is not permitted in certain domains
at all, or without payment). Users of the archive should
check that they are entitled to use material they have
retrieved from the nonfree tree.

The Catalogue (one of the prime sources for finding
TEX-related material via web search — see question 50)
lists the licence details in each entry in its lists. The cat-
alogue also provides For details of the licence categories,
see its list of licences — see http://www.tex.ac.uk/tex-
archive/help/Catalogue/licenses.html

47 Contributing a file to the archives

If you are able to use anonymous ftp, get yourself a copy
of the file README. uploads from the root directory of any
CTAN archive (see question 45). The file tells you where
to upload, what to upload, and how to notify the CTAN
management about what you want doing with your up-
load.

You may also upload via the Web: each of
the principle CTAN sites offers an upload page —
choose from http://www.ctan.org/upload.html, http:
//www.dante.de/upload.html or http://www.tex.ac.
uk/upload.html; the pages lead you through the process,
showing you the information you need to supply.

If you can use neither of these methods, ask advice
of the CTAN management (ctan@dante.de): if the worst
comes to the worst, it may be possible to mail a contri-
bution.

You will make everyone’s life easier if you choose a
descriptive and unique name for your submission. De-
scriptiveness is in the eye of the beholder, but do try and
be reasonable; and it’s probably a good idea to check
that your chosen name is not already in use by brows-
ing the archive (see question 49), or the Catalogue (see
question 50).

If it’s appropriate (if your package is large, or regularly
updated), the CTAN management can arrange to mirror
your contribution direct into the archive. At present this
may only be done if your contribution is available via ftp,
and of course the directory structure on your archive must

it
48 Finding (I*)TEX macro packages

Before you ask for a TEX macro or BTEX class or package
file to do something, try searching Graham Williams’ cat-
alogue. You can also search the catalogue over the web
(see question 50).

If you have learnt of a file, by some other means, that
seems interesting, search a CTAN archive for it (see ques-

16

tion 49). For packages listed in The KTEX Companion
(see question 22) the file may be consulted as an alterna-
tive to searching the archive’s index. It lists the current
location in the archive of such files.

Graham Williams’ catalogue:
help/Catalogue/catalogue.html

companion.ctan: info/companion.ctan

49 Finding files in the CTAN archives

To find software at a CTAN site, you can use anonymous
ftp to the host with the command ‘quote site index
<term>’, or the searching script at http://www.dante.
de/cgi-bin/ctan-index

To get the best use out of the ftp facility you should
remember that <term> is a Regular Ezrpression and not
a fixed string, and also that many files are distributed
in source form with an extension different to the final
file. (For example IXTEX packages are often distributed
sources with extension dtx rather than as package files
with extension sty.)

One should make the regular expresion general enough
to find the file you are looking for, but not too general,
as the ftp interface will only return the first 20 lines that
match your request.

The following examples illustrate these points. To
search for the KWTEX package ‘caption’, you might use
the command:

quote site index caption.sty

but it will fail to find the desired package (which is dis-
tributed as caption.dtx) and does return unwanted ‘hits’
(such as hangcaption.sty). Also, although this example
does not show it the ‘.’ in ‘caption.sty’ is used as the
regular expression that matches any character. So

quote site index doc.sty

matches such unwanted files as language/swedish/
slatex/doc2sty/makefile

Of course if you know the package is stored as .dtx
you can search for that name, but in general you may
not know the extension used on the archive. The solution
is to add ‘/’ to the front of the package name and ‘\\.
to the end. This will then search for a file name that
consists solely of the package name between the directory
separator and the extension. The two commands:

quote site index /caption\\.
quote site index /doc\\.

do narrow the search down sufficiently. (In the case of
doc, a few extra files are found, but the list returned is
sufficiently small to be easily inspected.)

If the search string is too wide and too many files
would match, the list will be truncated to the first 20
items found. Using some knowledge of the CTAN direc-
tory tree you can usually narrow the search sufficiently.
As an example suppose you wanted to find a copy of the
dvips driver for MS-DOS. You might use the command:

quote site index dvips
but the result would be a truncated list, not including the
file you want. (If this list were not truncated 412 items

would be returned!) However we can restrict the search
to MS-DOS related drivers as follows.

quote site index msdos.*dvips

Which just returns relevant lines such as systems/msdos/
dviware/dvips/dvips5528.zip

A basic introduction to searching with regular expres-
sions is:

e Most characters match themselves, so "a" matches
"a" etc.;

e "." matches any character;

e "[abcD-F]" matches any single character from the
set {"a","p","c","D" "E" "F"},

e "x" placed after an expression matches zero or more
occurrences so "ax" matches "a" and "aaaa", and
"[a-zA-Z]*" matches a ‘word’;

e "\" ‘quotes’ a special character such as "." so "\."
just matches ".";
e "~" matches the beginning of a line;

e "$" matches the end of a line.

For technical reasons in the quote site index command,
you need to ‘double’ any \ hence the string /caption\\.
in the above example. The quote site command ignores
the case of letters. Searching for caption or CAPTION
would produce the same result.

50 Finding files by Web search

Two of the CTAN web servers offer a search facility:
http://www.tex.ac.uk/search and http://www.ctan.
org/search; you can look for a file whose name you al-
ready know (in pretty much the same way as the ftp-
based quote site index command — see question 49),
or you can do a keyword-based search of the catalogue.

The search script produces URLs for files that match
your search criteria. The URLs point to the CTAN site
or mirror of your choice; when you first use the script, it
asks you to choose a site, and stores its details in a cookie
on your machine. Choose a site that is close to you, to
reduce network load.

51 Finding new fonts

A comprehensive list of METAFONT fonts used to be
posted to comp.fonts and to comp.text.tex, roughly
every six weeks, by Lee Quin.

Nowadays, authors of new material in METAFONT are
few and far between (and mostly designing highly spe-
cialised things with limited appeal to ordinary users).
Most new fonts that appear are prepared in some scal-
able outline form or other (see question 86), and they are
almost all distributed under commercial terms.

METAFONT font list: info/metafont-list
52 TEX CD-ROMs

If you don’t have access to the Internet, there are obvious
attractions to TEX collections on a CD-ROM. Even those
with net access will find large quantities of TEX-related
files to hand a great convenience.

Ready-to-run TEX systems on CD-ROM are available:

e A consortium of User Groups (notably TUG,
UK TUG and GUTenberg) distributes the TEX Live
CD-ROM, now in its sixth edition. All members of
several User Groups receive copies free of charge.
Some user groups will also sell additional copies:

17

contact your local user group or TUG (see ques-
tion 21).
Details of TEX Live are available from its own
web page on the TUG site http://www.tug.org/
texlive.html

e The Dutch TEX Users Group (NTG) publish the
whole 4AlTEX workbench on a 2-CD-ROM set
packed with all the Windows TEX software, macros
and fonts you can want. It is available from NTG
(see http://www.ntg/nl/) direct, from TUG for
$40 and from UK TUG for £30 (a manual is in-
cluded). It is a useful resource for anyone to browse,
not just for Windows users.

An alternative to the ready-to-run system is the CTAN
archive snapshot; in general one would expect that such
systems would be harder to use, but that the volume of
resources offered would balance this extra inconvenience.
There were once commercial offerings in this field, but
nowadays the snapshot supplied to user group members
annually is about the only source of such things.

F TEX Systems
53 (IW)TEX for different machines

We list here the free or shareware packages; see see ques-
tion 55 for details of commercial packages.

Unix Instructions for retrieving the web2c¢ Unix TEX
distribution via anonymous ftp are to be found
in unixtex.ftp, though nowadays the sensible in-
staller will take (and possibly customise) one of the
packaged distributions such as teTEX (which often
has a more recent version of web2c embedded than
has been released “in the wild”), or the TEX Live
CD-ROM (see question 52).

For teTEX, you need at most one each of the
.tar.gz files for teTeX-src, teTeX-texmf and
teTeX-texmfsrc

Sets of binaries for many common Unix systems are
to be found as part of the teTEX distribution, or on
the TEX Live CD-ROM. There are rather more to be
found on CTAN; you’ll find compressed . tar archive
for each supported architecture in the directory. In
default of a precompiled version, teTEX will com-
pile on most Unix systems, though it was originally
developed for use under Linux (see below).

MacOS X users should refer to the information be-
low, under item “Mac”.

tetex: Browse systems/unix/teTeX/1.0/
distrib/sources

tetex binaries: Browse systems/unix/teTeX/
1.0/distrib/binaries

uniztex. ftp: systems/unix/unixtex.ftp

web2c: systems/web2c

Linux There are at least two respectable implementa-
tions of TEX to run on Linux, NTEX and teTgEX
(see above).
Beware the Slackware 96 CD-ROM distribution of
NTEX: it includes a version of the CM fonts that

has deeply offended Don Knuth (since it contra-
venes his distribution conditions). The Slackware
updates now offer teTEX, as do most Linux distri-
butions. The most recent offering is a free version of
the commercial VIEX (see question 55), which spe-
cialises in direct production of PDF from (I&)TEX
input.

ntex: systems/unix/ntex

tetex: Browse systems/unix/teTeX/1.0/
distrib/sources

tetexz binaries: Browse systems/unix/teTeX/
1.0/distrib/binaries

vter: systems/vtex/linux (needs
systems/vtex/common)

PC; MS-DOS or 0S/2 EmTEX, by Eberhard Mattes,

includes I¥TEX, BIBTEX, previewers, and drivers,
and is available as a series of zip archives. Documen-
tation is available in both German and English. Ap-
propriate memory managers for using emTEX with
386 (and better) processors and under Windows,
are included in the distribution. EmTEX will oper-
ate under Windows, but Windows users are better
advised to use a distribution tailored for the Win-
dows environment.

A version of emTEX, packaged to use a TDS direc-
tory structure (see question 43), is separately avail-
able as an emTEX ‘contribution’.

emtex: systems/msdos/emtex

emtezIDS: systems/os2/emtex-
contrib/emtexTDS

PC; MS-DOS The most recent offering is an MS-DOS

port of the Web2C 7.0 implementation, using the
GNU djgpp compiler.

djgpp: systems/msdos/djgpp

PC; OS/2 0S/2 may also use a free version of the com-

mercial VIEX (see question 55), which specialises
in direct production of PDF from (I#)TEX input.

vter: systems/vtex/linux (needs
systems/vtex/common)

PC: Win32 fpTEX, by Fabrice Popineau, is a version of

teTEX for Windows systems. As such, it is par-
ticularly attractive to those who need to switch
back and forth between Windows and Unix envi-
ronments, and to administrators who need to main-
tain both (fpTEX can use the same texmf tree as a
teTEX installation). fpTEX’s previewer (Windwvi) is
based on zdvi, and takes advantage of extra facili-
ties in the Win32 environment. Windvi is capable
of printing directly, and a version of dvips is also
available.

MikTgX, by Christian Schenk, is also a compre-
hensive distribution, developed separately from the
teTEX work. It has its own previewer, YAP, which
is itself capable of printing, though the distribution
also includes a port of dvips. The current version is
available for file-by-file download (the HTML files in
the directory offer hints on what you need to get go-
ing). A prepackaged version of the whole directory

18

is also available.

A further (free) option arises from the “Cyg-
Win” bundle (see http://www.cygwin.com), which
presents a Unix-like environment over the Win32
interface; an X-windows server is available. If you
run CygWin on your Windows machine, you have
the option of using teTEX, too (you will need the
X-server, to run zdvi). Of course, teTEX compo-
nents will look like Unix applications (but that’s
presumably what you wanted), but it’s also reput-
edly somewhat slower than native Win32 implemen-
tations such as MikTEX or fpTEX. TeTEX is avail-
able as part of the CygWin distribution (in the same
way that a version is available with most Linux dis-
tributions, nowadays), and you may also build your
own copy from the current sources.

BaKoMa TgX, by Basil Malyshev, is a compre-
hensive (shareware) distribution, which focuses on
support of Acrobat. The distribution comes with
a bunch of Type 1 fonts packaged to work with
BaKoMa TgX, which further the focus.

bakoma: nonfree/systems/win32/bakoma
frtex: systems/win32/fptex

miktez: Acquire systems/win32/miktex/
setup/setup.exe and read systems/win32/
miktex/setup/install.html

tetex: systems/unix/teTeX/1.0/distrib/
sources

Windows NT, other platforms Ports of MikTEX for

Mac

NT on Power PC and AXP are available. Neither
version has been updated for version 1.2 (or later)
of MikTEX — they may not be satisfactory.

miktez for AXP: systems/win32/miktex—AXP

miktex for Power PC:
systems/win32/miktexppc

OzTEX, by Andrew Trevorrow, is a shareware ver-
sion of TEX for the Macintosh. A DVI previewer
and PostScript driver are also included.

UK TUG prepays the shareware fee, so that its mem-
bers may acquire the software without further pay-
ment. Questions about OzTEX may be directed to
oztex@midway.uchicago.edu

Another partly shareware program is CMacTgX,
put together by Tom Kiffe. This is much closer
to the Unix TEX setup (it uses dvips, for instance).
CMacTEX includes a port of the latest version of
Omega (see question 236).

Both OzTEX and CMacTEX are additionally avail-
able on MacOS X (see http://www.esm.psu.edu/
mac-tex/versionsX.html), but OS X users also
have the option of a build of TEX Live with a limited
texmf tree based on teTEX by Gerben Wierda (see
http://www.ntg.nl/macosx-tex/tex.html) This
is naturally usable from the command line, just like
any other Unix-based system, but it can also be
used Mac-style as the engine behind Richard Koch’s
(free) TEXShop, which is an integrated TEX editor
and previewer.

A useful resource for Mac users is to be found at

http://www.esm.psu.edu/mac-tex/; it has a news
and ‘help’ section, as well as details of systems
and tools. A useful resource for Mac users (see
http://www.esm.psu.edu/mac-tex/) has a news
and ‘help’ section, as well as details of systems and
tools.

cmactex: systems/mac/cmactex
oztez: nonfree/systems/mac/oztex

MacOS X TeX backend:
http://www.ntg.nl/macosx-
tex/ii-home/tex.html

TeXShop frontend: http://darkwing.uoregon.
edu/"koch/texshop/texshop.html

OpenVMS TEX for OpenVMS is available.
Standard tape distribution is through DECUS (see
question 45).

OpenVMS: systems/OpenVMS/TEX97_CTAN.ZIP

Atari TgX is available for the Atari ST.
If anonymous ftp is not available to you, send a
message containing the line ‘help’ to atari@atari.
archive.umich.edu

Atari TeX: systems/atari

Amiga Full implementations of TEX 3.1 (PasTEX) and
METAFONT 2.7 are available.
You can also order a CD-ROM containing this and
other Amiga software from Walnut Creek CDROM,
telephone +1 510-947-5997.

PasTeX: systems/amiga

TOPS-20 TgX was originally written on a DEC-10 un-
der WAITS, and so was easily ported to TOPS-20.
A distribution that runs on TOPS-20 is available
via anonymous ftp from ftp.math.utah.edu in
pub/tex/pub/web

54 TgX-friendly editors and shells

There are good TEX-writing environments and editors for
most operating systems; some are described below, but
this is only a personal selection:

Unix Try GNU emacs or zemacs, and the AUC-TEX

mode (AUC-TEX is available from CTAN, but emacs
itself isn’t). AUC-TEX provides menu items and
control sequences for common constructs, checks
syntax, lays out markup nicely, lets you call TEX
and drivers from within the editor, and everything
else like this that you can think of. Complex, but
very powerful.
Nedit (see http://nedit.org/) is another free,
programmable, editor available for Unix systems.
An AUC-TgX-alike package for Nedit is available
from CTAN.

MS-DOS There are several choices:

o TEXshell is a simple, easily-customisable envi-
ronment, which can be used with the editor of
your choice.

e Eddi4TEX (also shareware) is a specially-
written TEX editor which features intelligent
colouring, bracket matching, syntax checking,

19

online help and the ability to call TEX pro-
grams from within the editor. It is highly cus-
tomisable, and features a powerful macro lan-
guage.
You can also use GNU emacs and AUC-TEX under
MS-DOS.

Windows ’9x, NT, etc. Winedt, a shareware package,
is highly spoken of. It provides a shell for the use
of TEX and related programs, as well as a powerful
and well-configured editor.

The 4AlTEX CD-ROM (see question 52) contains
another powerful Windows-based shell.

0S/2 EddidTEX works under OS/2; an alternative is
epmtez, which offers an OS/2-specific shell.

Macintosh The commercial Textures provides an excel-
lent integrated Macintosh environment with its own
editor. More powerful still (as an editor) is the
shareware Alpha which is extensible enough to let
you perform almost any TEX-related job. It works
well with OzTgX.

Atari, Amiga and NeXT users also have nice environ-
ments. KTREX users looking for make-like facilities should
try latexmk.

There is another set of shell programs to help you ma-
nipulate BIBTEX databases.

alpha: systems/mac/support/alpha
auctex: support/auctex

epmtex: systems/os2/epmtex
latexmk: support/latexmk

nedit latex support: support/NEdit-LaTeX-
Extensions

TeXshell: systems/msdos/texshell

TeXtelmEztel: systems/msdos/emtex—
contrib/TeXtelmExtel

winedt: systems/win32/winedt/winedt32.exe

55 Commercial TEX implementations

There are many commercial implementations of TEX. The
first appeared not long after TEX itself appeared.

What follows is probably an incomplete list. Natu-
rally, no warranty or fitness for purpose is implied by the
inclusion of any vendor in this list. The source of the
information is given to provide some clues to its currency.

In general, a commercial implementation will come
‘complete’, that is, with suitable previewers and printer
drivers. They normally also have extensive documenta-
tion (i.e., not just the TEXbook!) and some sort of sup-
port service. In some cases this is a toll free number (prob-
ably applicable only within the USA and or Canada), but
others also have email, and normal telephone and fax sup-
port.

PC; TrueTEX Runs on all versions of Windows.

Richard J. Kinch
TrueTeX Software

6994 Pebble Beach Court
Lake Worth FL 33467
USA

Tel: +1 561-966-8400
Email: kinch@truetex.com

Web: http://wuw.truetex.com/

Source: Mail from Richard Kinch, October 2001.
PC; Y&Y TEX “Bitmap free TEX for Windows.”

Y&Y, Inc.
106 Indian Hill, MA 01741
USA

Tel:
ica)
Tel: +1 978-371-3286

Fax: 41 978-371-2004

Email: sales-help@YandY.com and
tech-help@YandY.com

Web: http://wuw.YandY.com/

Source: Mail from Y&Y, July 2001
pcTEX Long-established: pcTEX32 is a Windows imple-
mentation.

Personal TEX Inc

12 Madrona Street
Mill Valley, CA 94941
USA

Tel: 800-808-7906 (within the USA)

Fax: 41 415-388-8865

Email: texsales@pctex.com and
texsupp@pctex.com

Web: http://wuw.pctex.com/

800-742-4059 (within North Amer-

Source: Mail from Personal TEX Inc, September
1997

PC; VIEX DVI, PDF and HTML backends, Visual Tools
and Type 1 fonts

MicroPress Inc

68-30 Harrow Street
Forest Hills, NY 11375
USA

Tel: +1 718-575-1816

Fax: +1 718-575-8038

Email: support@micropress-inc.com
Web: http://www.micropress-inc.
com/

Source: Mail from MicroPress, Inc., July 1999

PC; Scientific Word Scientific Word and Scientific
Workplace offer a mechanism for near-wysSIwyaG in-
put of MTEX documents; they ship with TrueTEX
from Kinch (see above). Queries within the UK and
Ireland should be addressed to Scientific Word Ltd.,
others should be addressed directly to the publisher,
MacKichan Software Inc.

Dr Christopher Mabb

Scientific Word Ltd.

49 Queen Street

Peterhead

Aberdeenshire, AB42 1TU

UK

Tel: 0845 7660340 (within the UK)
Tel: 444 1779 490500

Fax: 01779 490600 (within the UK)

Email: christopher@sciword.demon.

20

co.uk
‘Web:
uk

http://www.sciword.demon.co.

MacKichan Software Inc.

600 Ericksen Ave. NE, Suite 300
Bainbridge Island WA 98110
USA

Tel: +1 206 7802799

Fax: 4+1 206 7802857

Email: info@mackichan.com

Web: http://www.mackichan.com

Source: Mail from Christopher Mabb, May 1999
Macintosh; Textures “A TEX system ‘for the rest of

us’”; also gives away a METAFONT implementation
and some font manipulation tools.

Blue Sky Research
534 SW Third Avenue
Portland, OR 97204
USA

Tel: 800-622-8398 (within the USA)
Tel: +1 503-222-9571

Fax: 41 503-222-1643

Email: sales@bluesky.com

Web: http://www.bluesky.com/

Source: TUGboat 15(1) (1994)

AmigaTgX A full implementation for the Commodore
Amiga, including full, on-screen and printing sup-
port for all PostScript graphics and fonts, IFF raster
graphics, automatic font generation, and all of the
standard macros and utilities.

Radical Eye Software

PO Box 2081
Stanford, CA 94309
USA

Source: Mail from Tom Rokicki, November 1994

G DVI Drivers and Previewers

56 DVI to PostScript conversion programs

The best public domain DVI to PostScript conversion pro-
gram, which runs under many operating systems, is Tom
Rokicki’s dvips. dvips is written in C and ports eas-
ily. All current development is in the context of Karl
Berry’s kpathsea library, and sources are available from
the TEX live repository.

VMS versions are available through the DECUS library
(see question 45), and also as part of the CTAN distribu-
tion of TEX for VMS.

A precompiled version to work with emTREX is avail-
able on CTAN.

Macintosh users can use either the excellent drivers
built into OzTEX or Textures, or a port of dvips in the
CMacTEX package.

MS-DOS and OS/2: systems/msdos/dviware/dvips
VMS distribution: systems/OpenVMS/TEX97_CTAN.ZIP

57 DVI drivers for HP LaserJet

The emTEX distribution (see question 53) contains a
driver for the LaserJet, dvihplj.

Version 2.10 of the Beebe drivers supports the Laser-
Jet. These drivers will compile under Unix, VMS, and on
the Atari ST and DEC-20s.

For Unix systems, Karl Berry’s dviljk uses the same
path-searching library as web2c.

Beebe drivers: dviware/beebe
dviljk: dviware/dviljk
58 Output to “other” printers

In the early years of TEX, there were masses of DVI drivers
for any (then) imaginable kind of printer, but the steam
seems rather to have gone out of the market for produc-
tion of such drivers for printer-specific formats. There are
several reasons for this, but the primary one is that few
formats offer the flexibility available through PostScript,
and ghostscript is so good, and has such a wide range
of printer drivers (perhaps this is where the DVI output
driver writers have all gone?).

The general advice, then, is to generate PostScript
(see question 56), and to process that with ghostscript
set to generate the format for the printer you actually
have. If you are using a Unix system of some sort, it’s
generally quite easy to insert ghostscript into the print
spooling process.

ghostscript: Browse nonfree/support/ghostscript
59 DVI previewers

EmTEX for PCs running MS-DOS or 0S/2, MikTEX and
fpTEX for PCs running Windows and OzTEX for the Mac-
intosh, all come with previewers that can be used on those
platforms. EmTEX’s previewer can also be run under
Windows 3.1.

Commercial PC TEX packages (see question 55) have
good previewers for PCs running Windows, or for Macin-
toshes.

For Unix systems, there is one ‘canonical’ viewer, zdv:.
Xdvik is a version of zdvi using the web2c¢ libraries. Unix
TEX distributions (such as teTEX or NTEX) include a ver-
sion of zdvik using the same version of web2c as the rest
of the distribution.

Alternatives to previewing include

e conversion to ‘similar’ ASCII text (see question 67)
and using a conventional text viewer to look at that,

e generating a PostScript version of your document
and viewing it with a Ghostscript-based previewer
(see question 83), and

e generating PDF output, and viewing that with
Acrobat Reader or one of the substitutes for that.

zdvi: dviware/xdvi

zdvik: dviware/xdvik

H Support Packages for TEX

60 Fig, a TpX-friendly drawing package

(X)Fig is a menu driven tool that allows you to draw
objects on the screen of an X workstation; transfig is a

21

set of tools which translate the code fig produces to other
graphics languages including PostScript and the IETEX
picture environment.

Fig is supported by Micah Beck and transfig is main-
tained by Brian Smith. Another tool for fig conversion is
fig2mf which generates METAFONT code from fig input.

fig2mf: graphics/fig2mf
zfig: graphics/xfig

transfig: graphics/transfig

61 TEXCAD, a drawing package for BTEX

TEXCAD is a program for the PC which enables the user
to draw diagrams on screen using a mouse or arrow keys,
with an on-screen menu of available picture-elements. Its
output is code for the BTEX picture environment. Op-
tionally, it can be set to include lines at all angles us-
ing the emTEX driver-family \specials (see question 38).
TEXCAD is part of the emTEX distribution.

A Unix port of the program (atezcad) has been made.

emtez: systems/msdos/emtex

ztezcad: nonfree/graphics/xtexcad/xtexcad-
2.4.1.tar.gz

62 Spelling checkers for work with TEX

For Unix, ispell is probably the program of choice; it is
well integrated with the emacs, and deals with some TEX
syntax.

For Windows, there is a good spell checker incorpo-
rated into the WinEDT and 4AlTEX shell/editors (see
question 54). The 4AlTEX checker is also available as a
separate package, 4spell.

For the Macintosh, Excalibur is the program of choice.
It will run in native mode on both sorts of Macintosh. The
distribution comes with dictionaries for several languages.

The VMS Pascal program spell makes special cases of
some important features of BTEX syntax.

For MS-DOS, there are several programs. Amspell can
be called from within an editor, and jspell is an extended
version of ispell.

4spell: support/4spell
amspell: support/amspell

ezcalibur: systems/mac/support/excalibur/
Excalibur-3.0.2.hgx

ispell: Browse support/ispell, but beware of any
version with a number 4.x — such versions
represent a divergent version of the source which
lacks many useful facilities of the 3.x series.

jspell: support/jspell
VMS spell: support/vmspell

winedt: systems/win32/winedt/winedt32.exe

63 How many words have you written?

One often has to submit a document (e.g., a paper or
a dissertation) under some sort of constraint about its
size. Sensible people set a constraint in terms of numbers
of pages, but there are some that persist in limiting the
numbers of words you type.

A simple solution to the requirement can be achieved
following a simple observation: the powers that be are un-
likely to count all the words of a document submitted to
them. Therefore, a statistical method can be employed:
find how many words there are on a full page; find how
many full pages there are in the document (allowing for
displays of various sorts, this number will probably not be
an integer); multiply the two. However, if the document
to be submitted is to determine the success of the rest of
one’s life, it takes a brave person to thumb their nose at
authority quite so comprehensively. . .

The simplest method is to strip out the (I)TEX
markup, and to count what’s left. On a Unix-like sys-
tem, this may be done using deter and the built-in we:

detex <filename> | wc -w
Winedt (see question 54) in the Windows environment
provides this functionality direct.

Simply stripping ()TEX markup isn’t entirely reli-
able, however: that markup itself may contribute typeset
words, and this could be a problem. The wordcount pack-
age contains a Bourne shell (i.e., typically Unix) script
for running a IATEX file with a special piece of supporting
TEX code, and then counting word indications in the log
file. This is probably as accurate automatic counting as
you can get.

detez: support/detex

wordcount: macros/latex/contrib/supported/
wordcount

I Literate programming

64 What is Literate Programming?

Literate programming is the combination of documenta-
tion and source together in a fashion suited for reading
by human beings. In general, literate programs combine
source and documentation in a single file. Literate pro-
gramming tools then parse the file to produce either read-
able documentation or compilable source. The WEB style
of literate programming was created by D. E. Knuth dur-
ing the development of TEX.

The “documented IATEX” style of programming (see
question 39) is regarded by some as a form of literate pro-
gramming, though it only contains a subset of the con-
structs Knuth used.

Discussion of literate programming is conducted in the
newsgroup comp.programming.literate, whose FAQ is
stored on CTAN. Another good source of information is
http://www.literateprogramming.com/

Literate Programming FAQ: help/LitProg-FAQ

65 WEB systems for various languages

TEX is written in the programming language WEB; WEB
is a tool to implement the concept of “literate program-

22

ming”. Knuth’s original implementation will be in any
respectable distribution of TEX, but the sources of the
two tools (tangle and weave), together with a manual
outlining the programming techniques, may be had from
CTAN.

CWEB, by Silvio Levy, is a WEB for C programs.

Spidery WEB, by Norman Ramsey, supports many
languages including Ada, awk, and C and, while not in
the public domain, is usable without charge.

FWEB, by John Krommes, is a version for Fortran,
Ratfor, and C.

Scheme WEB, by John Ramsdell, is a Unix filter
that translates SchemeWEB into I TEX source or Scheme
source.

APLWERB is a version of WEB for APL.

FunnelWeb is a version of WEB that is language inde-
pendent.

Other language independent versions of WEB are
nuweb (which is written in ANSI C) and noweb.

Tweb is a WEB for Plain TEX macro files, using noweb.

aplwedb: web/apl/aplweb
cweb: web/c_cpp/cweb
funnelwedb: web/funnelweb
fweb: web/fweb

noweb: web/noweb

nuwebd : web/nuweb
schemeweb: web/schemeweb
spiderweb: web/spiderweb
tangle: systems/knuth/web
tweb: web/tweb

weave: systems/knuth/web

J Format conversions

66 Conversion between (I2)TEX and others

troff troff-to-latex, written by Kamal Al-Yahya at Stan-
ford University (California, USA), assists in the
translation of a troff document into IXTEX format.
It recognises most -ms and -man macros, plus most
eqn and some tbl preprocessor commands. Any-
thing fancier needs to be done by hand. Two style
files are provided. There is also a man page (which
converts very well to BTEX...). The program is
copyrighted but free. t¢r2latex is an enhanced ver-
sion of this troff-to-latex.

The DECUS TEX distribution (see question 45) also
contains a program which converts troff to TEX.

WordPerfect wp2later has recently been much im-
proved, and is now available either for MS-DOS or
for Unix systems, thanks to its current maintainer
Jaroslav Fojtik.

PC-Write pcwritex.arc is a print driver for PC-Write
that “prints” a PC-Write V2.71 document to a TEX-
compatible disk file. It was written by Peter Flynn
at University College, Cork, Republic of Ireland.

runoff Peter Vanroose’s rnototer conversion program is
written in VMS Pascal. The sources are distributed
with a VAX executable.

refer/tib There are a few programs for converting bib-
liographic data between BIBTEX and refer/tib for-
mats. The collection includes a shell script con-
verter from BIBTEX to refer format as well. The
collection is not maintained.
Ritf2tex, by Robert Lupton, is for converting Mi-
crosoft’s Rich Text Format to TEX. There is
also a convertor to INTEX by Erwin Wechtl, called
rif2latex. The latest converter, by Ujwal Sathyam
and Scott Prahl, is rtf2latex2e; this system seems
rather good already, and is still being improved.

Translation to RTF may be done (for a somewhat

constrained set of WTEX documents) by TEX2RTF,

which can produce ordinary RTF, Windows Help

RTF (as well as HTML, see question 69). TEX2RTF

is supported on various Unix platforms and under

Windows 3.1

Microsoft Word A rudimentary program for convert-
ing MS-Word to BTEX is wd2latex, for MS-DOS; a
better idea, however, is to convert the document
to RTF format and use one of the RTF converters
mentioned above.

Excel Ezcel2Latexr converts an Ezcel file into a ETEX
tabular environment; it comes as a .x1s file which
defines some FEzcel macros to produce output in a
new format.

RTF

A separate FAQ by Wilfried Hennings deals specifi-
cally with conversions between TEX-based formats and
word processor formats may be referred to for more de-
tailed information.

A group at Ohio State University (USA) is working
on a common document format based on SGML, with
the ambition that any format could be translated to or
from this one. FrameMaker provides “import filters” to
aid translation from alien formats (presumably including
TEX) to FrameMaker’s own.

excelllatex: support/excel2latex/x12latex.zip
pcwritex.arc: support/pcwritex

refer and tib tools: biblio/bibtex/utils/refer-
tools

rnototex: support/rnototex

rtf2later: support/rtf2latex
rtf2latez2e: support/rtf2latex2e
rtf2tex: support/rtf2tex

tex2rtf: support/tex2rtf

tr2latex: support/tr2latex
troff-to-latez: support/troff-to-latex
wd2latez: dviware/wd2latex

wp2latex: support/wp2latex

Word processor FAQ: http://www.tug.org/
utilities/texconv/index.html

Word processor FAQ (source):
help/wp-conv/wp-conv.zip

23

67 Conversion from (I*)TEX to plain ASCII

The aim here is to emulate the Unix nroff, which formats
text as best it can for the screen, from the same input as
the Unix typesetting program troff.

Converting DVI to plain text is the basis of many of
these techniques; sometimes the simple conversion pro-
vides a good enough response. Options are:

e dvi2tty (one of the earliest)

e crudetype

e catdvi, which is also capable of generating Latin-1
or UTF-8 encoded output. Catdvi was conceived
as a replacement for dvi2tty, but can’t (quite) be
recommended as a complete replacement yet.

Ralph Droms provides a tzt bundle of things in sup-
port of ASCII generation, but it doesn’t do a good job
with tables and mathematics. An alternative is the screen
package.

Another possibility is to use the IATEX-to-ASCII con-
version program, [2a, although this is really more of a
de-TEXing program.

The canonical de-TEXing program is detex, which re-
moves all comments and control sequences from its input
before writing it to its output. Its original purpose was to
prepare input for a dumb spelling checker, and it’s only
usable for preparing useful ASCII versions of a document
in highly restricted circumstances.

Tex2mail is slightly more than a de-TeXer — it’s a
Perl script that converts TEX files into plain text files, ex-
panding various mathematical symbols (sums, products,
integrals, sub/superscripts, fractions, square roots, ...)
into “ASCII art” that spreads over multiple lines if neces-
sary. The result is more readable to human beings than
the flat-style TEX code.

Another significant possibility is to use one of the
HTML-generation solutions (see question 69), and then to
use a browser such as lynz to dump the resulting HTML
as plain text.

catdvi: dviware/catdvi
crudetype: dviware/crudetype
detez: support/detex

dvi2tty: nonfree/dviware/dvi2tty
l2a: support/l2a

screen.sty: macros/latex209/contrib/misc/
screen.sty

tex2mail: support/tex2mail

txzt: support/txt
68 Conversion from SGML or HTML to TgX

SGML is a very important system for document stor-
age and interchange, but it has no formatting features;
its companion ISO standard DSSSL (see http://www.
jclark.com/dsssl/) is designed for writing transforma-
tions and formatting, but this has not yet been widely
implemented. Some SGML authoring systems (e.g., Soft-
Quad Author/ Editor) have formatting abilities, and there
are high-end specialist SGML typesetting systems (e.g.,
Miles33’s Genera). However, the majority of SGML users

probably transform the source to an existing typesetting
system when they want to print. TEX is a good candi-
date for this. There are three approaches to writing a
translator:

1. Write a free-standing translator in the traditional
way, with tools like yacc and lezx; this is hard, in
practice, because of the complexity of SGML.

2. Use a specialist language designed for SGML trans-
formations; the best known are probably Omnimark
and Balise. They are expensive, but powerful, in-
corporating SGML query and transformation abili-
ties as well as simple translation.

3. Build a translator on top of an existing SGML
parser. By far the best-known (and free!) parser
is James Clark’s nsgmls, and this produces a much
simpler output format, called ESIS, which can be
parsed quite straightforwardly (one also has the
benefit of an SGML parse against the DTD). Two
good public domain packages use this method:

e David Megginson’s sgmlspm, written in Perl
5, which is available from http://www.perl.
com/CPAN/modules/by-module/SGMLS

e Joachim Schrod and Christine Detig’s stil,
written in Common Lisp, which is avail-
able from ftp://ftp.th-darmstadt.de/pub/
text/sgml/stil

Both of these allow the user to write ‘handlers’ for
every SGML element, with plenty of access to at-
tributes, entities, and information about the context
within the document tree.

If these packages don’t meet your needs for an av-
erage SGML typesetting job, you need the big com-
mercial stuff.

Since HTML is simply an example of SGML, we do not
need a specific system for HTML. However, Nathan Tork-
ington developed himl2latex from the HTML parser in
NCSA’s Xmosaic package. The program takes an HTML
file and generates a ITEX file from it. The conversion
code is subject to NCSA restrictions, but the whole source
is available as support/html2latex

Michel Goossens and Janne Saarela published a very
useful summary of SGML, and of public domain tools for
writing and manipulating it, in TUGboat 16(2).

69 (IM)TEX conversion to HTML

TEX and IXTEX are well suited to producing electronically
publishable documents. However, it is important to re-
alize the difference between page layout and functional
mark-up. TEX is capable of extremely detailed page lay-
out; HTML is not, because HTML is a functional mark-up
language not a page layout language. HTML’s exact ren-
dering is not specified by the document that is published
but is, to some degree, left to the discretion of the browser.
If you require your readers to see an exact replication of
what your document looks like to you, then you cannot
use HTML and you must use some other publishing for-
mat such as PDF. That is true for any HTML authoring
tool.

TEX’s excellent mathematical capabilities remain a
challenge in the business of conversion to HTML. There

24

are only two generally reliable techniques for generating
mathematics on the web: creating bitmaps of bits of type-
setting that can’t be translated, and using symbols and
table constructs. Neither technique is entirely satisfac-
tory. Bitmaps lead to a profusion of tiny files, are slow to
load, and are inaccessible to those with visual disabilities.
The symbol fonts offer poor coverage of mathematics, and
their use requires configuration of the browser. The fu-
ture of mathematical browsing may be brighter — see
question 239.
For today, possible packages are:

LaTeX2HTML a perl script package that supports
KTEX only, and generates mathematics (and other
“difficult” things) using bitmaps. The original ver-
sion was written by Nikos Drakos for Unix systems,
but the package is now also available for Windows
systems. Michel Goossens and Janne Saarela pub-
lished a detailed discussion of LaTeX2HTML, and
how to tailor it, in TUGboat 16(2).

TtH a compiled program that supports either KTEX
or plain TEX, and uses the font/table technique
for representing mathematics. It is written by Ian
Hutchinson, using flex. The distribution consists of
a single C source (or a compiled executable), which
is easy to install and very fast-running.

Texjht a compiled program that supports either EXTEX
or plain TEX, by processing a DVI file; it uses
bitmaps for mathematics, but can also use other
technologies where appropriate. Written by Eitan
Gurari, it parses the DVI file generated when you
run () TEX over your file with tez/ht’s macros in-
cluded. As a result, it’s pretty robust against the
macros you include in your document, and it’s also
pretty fast.

TeXpider a commercial program from MicroPress (see
question 55), which is described on http://www.
micropress-inc.com/webb/wbstart.htm; it uses
bitmaps for equations.

Hevea a compiled program that supports IXTEX only,
and uses the font/table technique for equations (in-
deed its entire approach is very similar to TtH).
It is written in Objective CAML by Luc Maranget.
Hevea isn’t archived on CTAN; details (includ-
ing download points) are available via http://
pauillac.inria.fr/"maranget/hevea/

The World Wide Web Consortium maintains a list
of “filters” to HTML, with sections on (I&)TgX and
BIBTEX — see http://www.w3.org/Tools/Word_proc_
filters.html

latez2html: Browse support/latex2html

tex4ht: support/TeX4ht/texdht.zip

tth: nonfree/support/tth/dist/tth_C.tgz

70 Using TEX to read SGML or XML directly

This can nowadays be done, with a certain amount of
clever macro programming. David Carlisle’s xmltex is the
prime example; it offers a practical solution to typesetting
XML files.

One use of a TEX that can typeset XML files is as a
backend processor for XSL formatting objects, serialized

as XML. Sebastian Rahtz’s PassiveTEX uses zmltex to
achieve this end.

zmltex: macros/xmltex/base

passivetex: macros/xmltex/contrib/passivetex

71 Retrieving (B)TEX from DVI, etc.

The job just can’t be done automatically: DVI, PostScript
and PDF are “final” formats, supposedly not susceptible
to further editing — information about where things came
from has been discarded. So if you've lost your (I&)TEX
source (or never had the source of a document you need
to work on) you’ve a serious job on your hands. In many
circumstances, the best strategy is to retype the whole
document, but this strategy is to be tempered by con-
sideration of the size of the document and the potential
typists’ skills.

If automatic assistance is necessary, it’s unlikely that
any more than text retrieval is going to be possible; the
(IM)TEX markup that creates the typographic effects of
the document needs to be recreated by editing.

If the file you have is in DVI format, many of the tech-
niques for converting (IA)TEX to ASCII (see question 67)
are applicable. Consider dvi2tty, crudetype and catdvi.
Remember that there are likely to be problems finding in-
cluded material (such as included PostScript figures, that
don’t appear in the DVI file itself), and mathematics is
unlikely to convert easily.

To retrieve text from PostScript files, the ps2ascii tool
(part of the ghostscript distribution) is available. One
could try applying this tool to PostScript derived from an
PDF file using pdf2ps (also from the ghostscript distribu-
tion), or Acrobat Reader itself; an alternative is pdftotext,
which is distributed with zpdf.

catdvi: dviware/catdvi

crudetype: dviware/crudetype

dvil2tty: nonfree/dviware/dvi2tty
ghostscript: nonfree/support/ghostscript
zpdf: Browse support/xpdf

72 Translating BTEX to Plain TpX

Unfortunately, no “general”, simple, automatic process is
likely to succeed at this task. See “How does KTEX relate
to Plain TEX” (see question 11) for further details.

Translating a document designed to work with EXTEX
into one designed to work with Plain TEX is likely
to amount to carefully including (or otherwise re-
implementing) all those parts of BTEX, beyond the pro-
visions of Plain TEX, which the document uses.

K Hypertext and PDF

73

If you want on-line hypertext with a (I4)TEX source, prob-
ably on the World Wide Web, there are four technologies
to consider:

Making hypertext documents from TEX

1. Direct (IA)TEX conversion to HTML (see ques-
tion 69);

25

2. Use Tezxinfo (see question 16), and use the info
viewer, or convert the tezinfo to HTML;

3. Use Adobe Acrobat, which will preserve your type-
setting perfectly (see question 74);

4. The hyperTEX conventions (standardised \special
commands); there are supporting macro packages

for Plain TEX and TEX).

The HyperTEX project extended the functionality of
all the ITEX cross-referencing commands (including the
table of contents) to produce \special commands which
are parsed by DVI processors conforming to the Hy-
perTEX guidelines; it provides general hypertext links,
including those to external documents.

The HyperTEX specification says that conformant
viewers/translators must recognize the following set of
\special commands:

href: html:

name: html:

end: html:

image: html:
base_name: html:<base href = "href_string">

The href, name and end commands are used to do the
basic hypertext operations of establishing links between
sections of documents.

Further details are available on http://arXiv.org/
hypertex/; there are two commonly-used implementa-
tions of the specification, a modified zdvi and (recent re-
leases of) dvips. Output from the latter may be used in
recent releases of ghostscript or Acrobat Distiller.

74 Making Acrobat documents from EBTEX

There are three general routes to Acrobat output:
Adobe’s original ‘distillation’ route (via PostScript out-
put), conversion of a DVI file, and the use of a direct
PDF generator such PDFTEX (see question 238) or Mi-
croPress’s VTEX (see question 55).

For simple documents (with no hyper-references), you
can either

e process the document in the normal way, produce
PostScript output and distill it;

e (on a Windows or Macintosh machine with the ap-
propriate Adobe tools installed) pass the output
through the PDFwriter in place of a printer driver
(this route is a dead end: the PDFwriter cannot
create hyperlinks);

e process the document in the normal way and gen-
erate PDF direct from the DVI with dvipdfm; or

e process the document direct to PDF with PDFTEX
or VIEX. PDFTEX has the advantage of availabil-
ity for a wide range of platforms, VTEX (available
commercially for Windows, or free of charge for
Linux or 0S/2) has wider graphics capability, deal-
ing with encapsulated PostScript and some in-line
PostScript.

To translate all the IATEX cross-referencing into Ac-
robat links, you need a IXTEX package to suitably rede-
fine the internal commands. There are two of these for
TEX, both capable of conforming to the HyperTEX spec-
ification (see question 73): Sebastian Rahtz’s hyperref,

and Michael Mehlich’s hyper. Hyperref uses a configu-
ration file to determine how it will generate hypertext;
it can operate using PDFTEX primitives, the hyperTEX
\specials, or DVI driver-specific \special commands.
Both dvips and Y&Y’s DVIPSONE translate the DVI with
these \special commands into PostScript acceptable to
Distiller, and dvipdfm has \special commands of its own.

There is no free implementation of all of Adobe
Distiller’s functionality, but recent versions of ghostscript
provide pretty reliable distillation (but beware of the
problems discussed in question 75). Also, Distiller itself
is now remarkably cheap (for academics at least).

For viewing (and printing) the resulting files, Adobe’s
Acrobat Reader is available for a fair range of platforms;
for those for which Adobe’s reader is unavailable, re-
motely current versions of ghostscript can display and
print PDF files.

Acrobat Reader: browse ftp:
//ftp.adobe.com/pub/adobe/acrobatreader

dvipdfm: dviware/dvipdfm
ghostscript: Browse nonfree/support/ghostscript
hyper.sty: macros/latex/contrib/supported/hyper

hyperref.sty: macros/latex/contrib/supported/
hyperref

vtez: systems/vtex/linux (for Linux) or
systems/vtex/os2 (for 0S/2), together with
systems/vtex/common

75 Quality of PDF from PostScript

Any output of dvips may (in principle) be converted
to PDF, using either a sufficiently recent version of
ghostscript or Adobe’s (commercial) Distiller, but the re-
sults can be pretty poor if certain simple precautions are
omitted.

First, it’s important to use type 1 fonts in prepar-
ing the output; METAFONT bitmap fonts get converted
to type 3 fonts when converting to PDF, and Adobe’s
Acrobat Reader (which most of the world uses to view
PDF files) makes a very poor fist of displaying type 3
fonts. If you’ve written a document that uses nothing but
fonts such as Adobe Times, which only exist in type 1 for-
mat, no further action is actually required; however, most
ordinary (I2)TEX documents contain at least odd charac-
ters that originate in METAFONT, and it’s advisable to
tell dvips to use type 1 versions regardless. One does this
by using the dvips switches -Pcmz and -Pamz.

Second, if you're using ghostscript (or the ps2pdf
script that’s distributed with it) make sure you have an
appropriate version. Again, if your document contains
nothing but the “basic PostScript” set of fonts (Times,
etc), the restrictions are less burdensome and you can get
away with using ghostscript version 5.50; however, that
version makes type 3 fonts of any type 1 fonts embedded
in the PostScript, which is pretty unsatisfactory. To be
safe, ensure that you're using ghostscript version 6.00 at
least (at the time of writing, version 7.04 is current).

Third, some versions of Acrobat Reader are confused
by characters that are in positions where Adobe fonts
don’t hold characters, and most METAFONT-supplied

26

fonts have such characters (even after they’ve been con-
verted to type 1). Dvips provides a means for remapping
these characters to places where they’ll be harmless; to
invoke this facility, execute dvips with the switch -G1

Recent distributions of dvips come with a “pdf”
pseudo-printer description file; this bundles selection of
the type 1 fonts and character remapping with setting
a very high nominal printer resolution, thus sidestep-
ping dvips’s tendency to ‘optimise’ output destined for
low-resolution printers. Use this by including the -Ppdf
switch in your dvips command line.

76 Finding ‘8-bit’ Type 1 fonts

Elsewhere, these FAQs recommend that you use an ‘8-bit’
font to permit accentuation of inflected languages (see
question 173), and also recommend the use of Type 1
fonts to ensure that you get good quality PDF (see ques-
tion 75). Unfortuately, the combination proves not to be
entirely straightforward: it’s not always easy to find a
satisfactory set of Type 1 fonts.

The recommendations prove to be contradictory:
there are obstacles in the way of achieving both at the
same time. You can use one of the myriad text fonts avail-
able in Type 1 format (with appropriate PSNFSS metrics
for T1 encoding, or metrics for some other 8-bit encod-
ing such as LY1); you can use a commercial or shareware
CM-like Type 1 fonts; or you can use virtual font manip-
ulations — but all these options have their drawbacks.

If you use someone else’s text font (even something
as simple as Adobe’s Times family) you have to find a
matching family of mathematical fonts, which is a non-
trivial undertaking — see question 86.

Commercial CM-like fonts cost money: remarkably
little money for commercial products with such a large
intellectual property input, but more than this author
could ordinarily expend... Y&Y offer their “European
Modern” set: an extension of the CM fonts that may
used either with T1 or LY1 encoding; these are fonts
from the same stable that gave us the free AMS/Blue Sky
Research/Y&Y fonts, sensitively extended (though they
don’t cover the more eccentric areas of the T1 encoding,
and don’t come in the same welter of design sizes that the
EC fonts offer). Micropress offer the complete EC set in
Type 1 format, as part of their range of outline versions
of fonts that were originally distributed in METAFONT
format. See question 55.

The shareware BaKoMa TEX distribution (see ques-
tion 53) offers a set of Type 1 EC fonts, as an extra share-
ware option. (As far as the present author can tell, these
fonts are only available to users of BaKoMa TEX: they are
stored in an archive format that seems not to be publicly
available.)

Virtual fonts (see question 37) help us deal with the
problem, since they allow us to map “bits of DVI file” to
single characters in the virtual font; so we can create an
“é” character by recreating the DVI commands that would
result from the code “\’e”. However, since this involves
two characters being selected from a font, the arrange-
ment is sufficient to fool Acrobat Reader: you can’t use
the program’s facilities for searching for text that contains
inflected characters, and if you cut text from a window

Ivan
Use Type 1 Font

that contains such a character, you’ll find something un-
expected (typically the accent and the ‘base’ characters
separated by a space) when you paste the result. How-
ever, if you can live with this difficulty, virtual fonts are
a useful, straightforward, and cheap solution to the prob-
lem.

There are two virtual-font offerings of CM-based 8-
bit fonts — the ae (“almost EC”) and zefonts sets; the
zefonts set has wider coverage (though the ae set may be
extended to offer guillemets by use of the aeguill package).

ae fonts: fonts/ae

aeguill.sty: macros/latex/contrib/supported/
aeguill

zefonts: fonts/zefonts

77 Replacing Type 3 fonts in PostScript

One often comes across a PostScript file generated by
dvips which contains embedded PK fonts; if you try to
generate PDF from such a file, the quality will be poor.

Of course, the proper solution is to regenerate the
PostScript file, but if neither the sources nor the DVI
file are available, one must needs resort to some sort of
patching to replace the bitmap fonts in the file by outline
fonts.

The program pkfiz (by Heiko Oberdiek) will do this
patching, for files created by “not too old versions” of
dvips: it finds the fonts to be replaced by examining
the PostScript comments dvips has put in the file. For
each font, pkfix puts appropriate TEX commands in a
file, which it then processes and runs through dvips (with
switch -Ppdf) to acquire an appropriate copy of the font;
these copies are then patched back into the original file.

Another program, dvistrip, is available from Y&Y’s
web site for Windows users who also have Adobe Acrobat
Distiller available. Dwistrip simply removes the fonts:
the idea is that you then reinstate them in the course of a
run through distiller (which only works if distiller ‘knows’
about the fonts: it can be instructed via its Settings—
Font Locations tool).

dvistrip: Download from http:
//www.yandy.com/download/dvistrip.exe

pkfiz: support/pkfix

L METAFONT and MetaPost

78 Getting METAFONT to do what you want

METAFONT allows you to create your own fonts, and most
TEX users will never need to use it. METAFONT, unlike
TEX, requires some customisation: each output device for
which you will be generating fonts needs a mode associ-
ated with it. Modes are defined using the mode_def con-
vention described on page 94 of The METAFONTbook (see
question 22). You will need a file, which conventionally
called local.mf, containing all the mode_defs you will
be using. If local.mf doesn’t already exist, Karl Berry’s
collection of modes, available as fonts/modes/modes.mf,
is a good starting point (it can be used as a ‘local.mf’

without modification in a ‘big enough’ implementation
of METAFONT). Lists of settings for various output de-
vices are also published periodically in TUGboat (see
question 21). Now create a plain base file using inimf,
plain.mf, and local.mf:

% inimf

This is METAFONT. ..

**plain

(output)

*input local

(output)

*dump

Beginning to dump on file plain. ..
(output)

you type ‘plain’
you type this

you type this

This will create a base file named plain.base (or
something similar; for example, it will be PLAIN.BAS on
MS-DOS systems) which should be moved to the direc-
tory containing the base files on your system (note that
some systems have two or more such directories, one for
each ‘size’ of METAFONT used).

Now you need to make sure METAFONT loads this new
base when it starts up. If METAFONT loads the plain
base by default on your system, then you're ready to go.
Under Unix (using the default web2c distribution®) this
does indeed happen, but we could for instance define a
command mf which executes virmf &plain loading the
plain base file.

The usual way to create a font with plain METAFONT
is to start it with the line

\mode=<mode name>; mag=<magnification>;
input

in response to the “**’ prompt or on the METAFONT com-
mand line. (If <mode name> is unknown or omitted, the
mode defaults to ‘proof’ and METAFONT will produce
an output file called .2602gf) The
<magnification> is a floating point number or ‘magstep’
(magsteps are defined in The METAFONTbook and The
TeXbook). If mag=<magnification> is omitted, then the
default is 1 (magstep 0). For example, to generate cmr10
at 12pt for an epson printer you would type

mf \mode=epson; mag=magstep 1; input cmrlO

Note that under Unix the \ and ; characters must usu-
ally be quoted or escaped, so this would typically look
something like

mf ’\mode=epson; mag=magstep 1; input cmrl0’

If you don’t have inimf or need a special mode that
isn’t in the base, you can put its commands in a file (e.g.,
1n03.mf) and invoke it on the fly with the \smode com-
mand. For example, to create cmr10.300gf for an LNO3
printer, using the file

5The command_name is symbolically linked to virmf, and virmf loads command_name.base

27

% This is 1n03.mf as of 1990/02/27
% mode_def courtesy of John Sauter
proofing:=0;
fontmaking:=1;
tracingtitles:=0;
pixels_per_inch:=300;
blacker:=0.65;
fillin:=-0.1;
o_correction:=.5;
(note the absence of the mode_def and enddef com-
mands), you would type

mf \smode="1n03"; input cmrlO

This technique isn’t one you should regularly use, but it
may prove useful if you acquire a new printer and want
to experiment with parameters, or for some other reason
are regularly editing the parameters you're using. Once
you’ve settled on an appropriate set of parameters, you
should use them to rebuild the base file that you use.

A summary of the above written by Geoffrey Tobin,
and tips about common pitfalls in using METAFONT, is
available as info/metafont-for-beginners.tex

79 Which font files should be kept

METAFONT produces from its run three files, a metrics
(TFM) file, a generic font (GF) file, and a log file; all of
these files have the same base name as does the input
(e.g., if the input file was cmr10.mf, the outputs will be
cmr10.tfm, cmr10.nnngf% and cmr10.log).

For TEX to use the font, you need a TFM file, so you
need to keep that. However, you are likely to generate the
same font at more than one magnification, and each time
you do so you’ll (incidentally) generate another TFM file;
these files are all the same, so you only need to keep one
of them.

To preview or to produce printed output, the DVI pro-
cessor will need a font raster file; this is what the GF file
provides. However, while there used (once upon a time)
to be DVI processors that could use GF files, modern pro-
cessors use packed raster (PK) files. Therefore, you need
to generate a PK file from the GF file; the program gftopk
does this for you, and once you’ve done that you may
throw the GF file away.

The log file should never need to be used, unless there
was some sort of problem in the METAFONT run, and
need not be ordinarily kept.

80 Acquiring bitmap fonts

When CTAN was established, most people would start us-
ing TEX with a 300 dots-per-inch (dpi) laser printer, and
sets of Computer Modern bitmap fonts for this resolution
are available on CTAN: fonts/cm/pk/pk300.zip (for
write-black printer engines) and fonts/cm/pk/pk300w.
zip (for write-white engines).

At that time, there were regular requests that CTAN
should hold a wider range of resolutions, but they were
resisted for two reasons:

1. When a bitmap font is created with METAFONT, it
needs to know the characteristics of the device; who

knows what 600 or 1270 dpi device you have? (Of
course, this objection applies equally well to 300 dpi
printers.)

2. Bitmap fonts get big at high resolutions. Who
knows what fonts at what sizes people are going
to need?

Fortunately, (I#)TEX distribution technology has put a
stop to these arguments: most (if not all) current distri-
butions generate bitmap fonts as needed, and cache them
for later re-use. The impatient user, who is determined
that all bitmap fonts should be created once and for all,
may be supported by scripts such as allemn (distributed
with teTEX, at least; otherwise such a person should con-
sult question 78).

If your output is to a PostScript-capable device, it
may be worth switching to Type 1 versions of the CM
fonts. Two free versions are currently available; the older
(bakoma) is somewhat less well produced than the bluesky
fonts, which were originally professionally produced and
sold, but were then donated to the public domain by their
originators Y&Y and Bluesky Research, in association
with the AMS). Unfortunately, the coverage of the sets
is slightly different, but the present author hasn’t found
the need to use bakoma since bluesky became available.
In recent years, several other ‘METAFONT’ fonts have be-
come available in Type 1 format; it’s common never to
find the need of generating bitmap fonts for any purpose
other than previewing (see question 83).

The commercial font suppliers continue just to keep
ahead of the free software movement, and provide Type 1
versions of the EC fonts, CM-style Cyrillic fonts, as well
as a range of mathematical fonts to replace those in the
CM family (see question 86).

bakoma: fonts/cm/ps-typel/bakoma
bluesky: fonts/cm/ps-typel/bluesky

81 Making MetaPost output display in
ghostscript

MetaPost ordinarily expects its output to be included in
some context where the ‘standard’ METAFONT fonts (that
you've specified) are already defined — for example, as a
figure in TEX document. If you're debugging your Meta-
Post code, you may want to view it in ghostscript (or some
other PostScript previewer). However, the PostScript
‘engine’ in ghostscript doesn’t ordinarily have the fonts
loaded, and you’ll eperience an error such as
Error: /undefined in cmmilO

There is provision in MetaPost for avoiding this problem:
issue the command prologues := 2; at the start of the
.mp file.

Unfortunately, the PostScript that MetaPost inserts in
its output, following this command, is incompatible with
ordinary use of the PostScript in inclusions into (I&)TEX
documents, so it’s best to make the prologues command
optional. Furthermore, MetaPost takes a very simple-
minded approach to font encoding: since TEX font en-
codings regularly confuse sophisticated minds, this can
prove troublesome. If you're suffering such problems (the

6Note that the file name may be transmuted by such operating systems as MS-DOS, which don’t permit long file names

28

symptom is that characters disappear, or are wrongly pre-
sented) the only solution is to view the ‘original’ metapost
output after processing through IWTEX and dvips.
Conditional compilation may be done either by in-
putting MyFigure.mp indirectly from a simple wrapper
MyFigureDisplay.mp:
prologues := 2;
input MyFigure
or by issuing a shell command such as
mp ’\prologues:=2; input MyFigure’
(which will work without the quote marks if you're not
using a Unix shell).
A suitable ITEX route would involve processing
MyFigure.tex, which contains:

\documentclass{article}
\usepackage{graphicx}
\begin{document}
\thispagestyle{empty}
\includegraphics{MyFigure.1}
\end{document}
Processing the resulting DVI file with the dvips command
dvips -E -o MyFigure.eps MyFigure
would then give a satisfactory Encapsulated PostScript
file.

M PostScript and TEX

82 Using PostScript fonts with TEX

In order to use PostScript fonts, TEX needs metric (called
TFM) files. Several sets of metrics are available from
the archives; for mechanisms for generating new ones,
see question 84. You also need the fonts themselves;
PostScript printers come with a set of fonts built in, but
to extend your repertoire you almost invariably need to
buy from one of the many commercial font vendors (see,
for example, question 86).

If you use XTEX 2¢, the best way to get PostScript
fonts into your document is to use the PSNFSS pack-
age maintained by Walter Schmidt; it’s supported by the
EXTREX3 project team, so bug reports can and should be
submitted. PSNFSS gives you a set of packages for chang-
ing the default roman, sans-serif and typewriter fonts;
e.g., times.sty will set up Times Roman, Helvetica and
Courier in place of Computer Modern, while avant.sty
just changes the sans-serif family to AvantGarde. To go
with these packages, you will need the font metric files
(watch out for encoding problems! — see question 84)
and font description (.£d) files for each font family you
want to use. Many sets of metrics, etc., can be obtained
from the psfonts area of CTAN, arranged by vendor (e.g.,
Adobe, Monotype, etc.). For convenience, metrics for the
common ‘35’ PostScript fonts found in most printers are
provided with PSNFSS, packaged as the “Laserwriter set”.

For older versions of IXTEX there are various schemes,
of which the simplest to use is probably the PSIKTEX
macros distributed with dvips.

For Plain TEX, you load whatever fonts you like; if the
encoding of the fonts is not the same as Computer Mod-
ern it will be up to you to redefine various macros and

29

accents, or you can use the font re-encoding mechanisms
available in many drivers and in ps2pk and afm2tfm.

Victor Eijkhout’s Lollipop package (see question 15)
supports declaration of font families and styles in a similar
way to IMTEX’s NFSS, and so is easy to use with PostScript
fonts.

Some common problems encountered are discussed
elsewhere (see question 85).

Laserwriter set of 35 fonts:
macros/latex/required/psnfss/1w3bnfss.zip

lollipop: macros/lollipop
psfonts: Browse fonts/psfonts

psnfss: macros/latex/required/psnfss

83 Previewing files using Type 1 fonts

Until recently, free TEX previewers have only been ca-
pable of displaying bitmap PK fonts. (Y&Y’s commer-
cial previewer DVIWindo (see question 55) has long used
Adobe Type Manager to display Type 1 fonts directl, and
the most recent releases of xdvi sport a Type 1 font ren-
derer.) Other previewers of the current generation of-
fer automatic generation of the requisite PK files (using
gsftopk, or similar, behind tghe scenes). If your previewer
isn’t capable of this, you have three options:

1. Convert the DVI file to PostScript and use a
PostScript previewer. Some systems offer this ca-
pability as standard, but most people will need
to use a separate previewer such as ghostscript
or ghostscript-based viewers such as ghostview or
shareware offering gsview.

2. Under Windows on a PC, or on a Macintosh, let
Adobe Type Manager display the fonts. Textures
(Macintosh) works like this, and under Windows
you can use Y&Y’s dviwindo for bitmap-free pre-
viewing. (See question 55 for details of these sup-
pliers.)

3. If you have the PostScript fonts in Type 1 format,
use ps2pk or gsftopk (designed for use with the
ghostscript fonts) to make PK bitmap fonts which
your previewer will understand. This can produce
excellent results, also suitable for printing with non-
PostScript devices. Check the legalities of this if
you have purchased the fonts. The very commonest
PostScript fonts such as Times and Courier come in
Type 1 format on disk with Adobe Type Manager
(often bundled with Windows, and part of 0S/2).

ghostscript: Browse nonfree/support/ghostscript

ghostview: Browse support/ghostscript/gnu/
ghostview

gsftopk: fonts/utilities/gsftopk

gsview: Browse nonfree/support/ghostscript/
gsview

ps2pk: fonts/utilities/ps2pk

zdvi: dviware/xdvi

84 TgX font metric files for PostScript fonts

Reputable font vendors such as Adobe supply metric files
for each font, in AFM (Adobe Font Metric) form; these
can be converted to TFM (TEX Font Metric) form. The
CTAN archives have prebuilt metrics which will be more
than enough for many people; but you may need to do
the conversion yourself if you have special needs or ac-
quire a new font. One important question is the encoding
of (Latin character) fonts; while we all more or less agree
about the position of about 96 characters in fonts (the
basic ASCII set), the rest of the (typically) 256 vary. The
most obvious problems are with floating accents and spe-
cial characters such as the ‘pounds sterling’ sign. There
are three ways of dealing with this: either you change the
TEX macros which reference the characters (not much fun,
and error-prone); or you change the encoding of the font
(easier than you might think); or you use virtual fonts (see
question 37) to pretend to TEX that the encoding is the
same as it is used to. TEX 2¢ has facilities for dealing
with fonts in different encodings; read the KATEX Com-
panion (see question 22) for more details. In practice, if
you do much non-English (but Latin script) typesetting,
you are strongly recommended to use the fontenc pack-
age with option ‘T1’ to select ‘Cork’ (see question 42)
encoding. A useful alternative is Y&Y’s “private” LY1
encoding, which is designed to sit well with “Adobe stan-
dard” encoded fonts. Basic support of LY1 is available on
CTAN: note that the “relation with Adobe’s encoding”
means that there are no virtual fonts in the LY1 world.

Alan Jeffrey’s fontinst package is an AFM to TFM
converter written in TEX; it is used to generate the files
used by KTEX2¢:’s PSNFSS package to support use of
PostScript fonts. It is a sophisticated package, not for
the faint-hearted, but is powerful enough to cope with
most needs. Much of its power relies on the use of virtual
fonts (see question 37).

For slightly simpler problems, Rokicki’s afm2tfm, dis-
tributed with dvips, is fast and efficient; note that the
metrics and styles that come with dvips are not currently
KTEX 22 compatible.

For the Macintosh, there is a program called
EdMetrics which does the job (and more). EdMetrics
comes with the (commercial) Textures distribution, but
is itself free software, and is available on CTAN.

Windows users can buy Y&Y’s (see question 55) Font
Manipulation Tools package which includes a powerful
afmtotfm program among many other goodies.

dvips: dviware/dvips

EdMetrics: systems/mac/textures/utilities/
EdMetrics.sea.hgx

fontinst: fonts/utilities/fontinst

LY1 support: macros/latex/contrib/supported/
psnfssx/lyl

PS font metrics: Browse fonts/psfonts (this direc-
tory is at the root of a really rather large tree), or
http://home.vr-web.de/was/fonts.html, which
contains metrics for “fonts that didn’t make it on
to the CTAN directories”.

30

85 Deploying Type 1 fonts

For the BTEX user trying to use the PSNFSS (see ques-
tion 82) package, three questions may arise.

First, you have to declare to the DVI driver that you
are using PostScript fonts; in the case of dvips, this means
adding lines to the psfonts.map file, so that dvips will
know where the proper fonts are, and won’t try to find
PK files. If the font isn’t built into the printer, you have
to acquire it (which may mean that you need to purchase
the font files).

Second, your previewer must know what to do with
the fonts: see question 83.

Third, the stretch and shrink between words is a
function of the font metric; it is not specified in AFM
files, so different converters choose different values. The
PostScript metrics that come with PSNFSS used to pro-
duce quite tight setting, but they were revised in mid
1995 to produce a compromise between American and
European practice. Really sophisticated users may not
find even the new the values to their taste, and want to
override them. Even the casual user may find more hy-
phenation or overfull boxes than CMR produces; but CMR,
is extremely generous.

86 Choice of scalable outline fonts

If you are interested in text alone, you can use any of
over 20,000 fonts(!) in Adobe Type 1 format (called
‘PostScript fonts’ in the TEX world and ‘ATM fonts’ in the
DTP world), or any of several hundred fonts in TrueType
format. That is, provided of course, that your previewer
and printer driver support scalable outline fonts.

TEX itself only cares about metrics, not the actual
character programs. You just need to create a TEX met-
ric file TFM using some tool such as afm2tfm (possibly in
combination with vptouf), afmtotfm (from Y&Y, see ques-
tion 55) or fontinst. For the previewer or printer driver
you need the actual outline font files themselves (pfa for
Display PostScript, pfb for ATM on IBM PC, Mac outline
font files on Macintosh).

If you also need mathematics, then you are severely
limited by the demands that TEX makes of maths fonts
(for details, see the paper by B.K.P. Horn in TUGboat
14(3)). For maths, then, there are relatively few choices
(though the list is at last growing). There are several
font families available that are based on Knuth’s origi-
nal designs, and some that complement other commercial
text font designs; one set (MicroPress’s ‘informal math’)
stands alone.

Computer Modern (75 fonts — optical scaling) Donald E.
Knuth
The CM fonts were originally designed in METRA-
FONT, but are also now available in scalable outline
form. There are commercial as well as public do-
main versions, and there are both Adobe Type 1
and TrueType versions. A set of outline versions of
the fonts was developed as a commercial venture by
Y&Y and Blue Sky Research; they have since as-
signed the copyright to the AMS, and the fonts are
now freely available from CTAN. Their quality is
such that they have become the de facto standard
for Type 1 versions of the fonts.

AMS fonts (52 fonts, optical scaling) The AMS

This set of fonts offers adjuncts to the CM set, in-
cluding two sets of symbol fonts (msam and msbm)
and Fuler text fonts. These are not a self-standing
family, but merit discussion here (not least because
several other families mimic the symbol fonts).
Freely-available Type 1 versions of the fonts are
available on CTAN. The eulervm package permits
use of the Euler maths alphabet in conjunction with
text fonts that do not provide maths alphabets of
their own (for instance, Adobe Palatino or Minion).

Computer Modern Bright (62 fonts — optical scaling)

Walter Schmidt

CM Bright is a family of sans serif fonts, based on
Knuth’s CM fonts. It comprises the fonts neces-
sary for mathematical typesetting, including AMS
symbols, as well as text and text symbol fonts of
various shapes. The collection comes with its own
set of files for use with I¥TEX. The CM Bright fonts
are supplied in Type 1 format by MicroPress, Inc.

For further details (including samples) see
http://www.micropress-inc.com/fonts/
brmath/brmain.htm

Concrete Math (25 fonts — optical scaling) Ulrik Vieth

The Concrete Math font set was derived from the
Concrete Roman typefaces designed by Knuth. The
set provides a collection of math italics, math sym-
bol, and math extension fonts, and fonts of AMS
symbols that fit with the Concrete set, so that Con-
crete may be used as a complete replacement for
Computer Modern. Since Concrete is considerably
darker than CM, the family may particularly attrac-
tive for use in low-resolution printing or in applica-
tions such as posters or transparencies. Concrete
Math fonts, as well as Concrete Roman fonts, are
supplied in Type 1 format by MicroPress, Inc.

For further information (including samples) see
http://www.micropress-inc.com/fonts/
ccmath/ccmain. htm

BA Math (13 fonts) MicroPress Inc.

BA Math is a family of serif fonts, inspired by the
elegant and graphically perfect font design of John
Baskerville. BA Math comprises the fonts nec-
essary for mathematical typesetting (maths italic,
math symbols and extensions) in normal and bold
weights. The family also includes all OT1 and T1
encoded text fonts of various shapes, as well as
fonts with most useful glyphs of the TS1 encod-
ing. Macros for using the fonts with Plain TgX,
ETEX 2.09 and current IMTEX are provided.

For further details (including samples) see
http://www.micropress-inc.com/fonts/
bamath/bamain.htm

HV Math (14 fonts) MicroPress Inc.

HV Math is a family of sans serif fonts, inspired
by the Helvetica (TM) typeface. HV Math com-
prises the fonts necessary for mathematical typeset-
ting (maths italic, maths symbols and extensions)
in normal and bold weights. The family also in-

31

cludes all OT1 and T1 encoded text fonts of various
shapes, as well as fonts with most useful glyphs of
the TSI encoding. Macros for using the fonts with
Plain TEX, ETEX 2.09 and current IXTEX are pro-
vided. Bitmapped copies of the fonts are available
free, on CTAN.

For further details (and samples) see
http://www.micropress-inc.com/fonts/
hvmath/hvmain.htm

Informal Math (7 outline fonts) MicroPress Inc.
Informal Math is a family of fanciful fonts loosely
based on the Adobe’s Tekton (TM) family, fonts
which imitate handwritten text. Informal Math
comprises the fonts necessary for mathematical
typesetting (maths italic, maths symbols and ex-
tensions) in normal weight, as well as OT1 encoded
text fonts in upright and oblique shapes. Macros
for using the fonts with Plain TEX, ETEX 2.09 and
current BTEX are provided.

For further details (including samples) see
http://www.micropress-inc.com/fonts/
ifmath/ifmain.htm

Lucida Bright with Lucida New Math (25 fonts) Chuck
Bigelow and Kris Holmes
Lucida is a family of related fonts including ser-
iffed, sans serif, sans serif fixed width, calligraphic,
blackletter, fax, Kris Holmes’ connected handwrit-
ing font, etc; they’re not as ‘spindly’ as Computer
Modern, with a large x-height, and include a larger
set of maths symbols, operators, relations and de-
limiters than CM (over 800 instead of 384: among
others, it also includes the AMS msam and msbm
symbol sets). ‘Lucida Bright Expert’ (14 fonts)
adds seriffed fixed width, another handwriting font,
smallcaps, bold maths, upright ‘maths italic’, etc.,
to the set. The distribution includes support for
use with Plain TEX and I#TEX 2.09. Support under
KTEX 2¢ is provided in PSNFSS (see question 82)
thanks to Sebastian Rahtz and David Carlisle.

For a sample, see http://www.YandY.com/
download/chironlb.pdf

MathTime 1.1 (3 fonts) Publish or Perish (Michael Spi-
vak)
The set contains maths italic, symbol, and extension
fonts, designed to work well with Times-Roman.
These are typically used with Times, Helvetica and
Courier (which are resident on many printers, and
which are supplied with some PC versions). In ad-
dition you may want to complement this basic set
with Adobe’s Times Smallcap, and perhaps the set
of Adobe ‘Math Pi’ fonts, which include blackboard
bold, blackletter, and script faces.

For a sample, see http://www.YandY.com/
download/chironmt.pdf

MathTime Plus (12 fonts) Publish or Perish (Michael
Spivak)
Adds bold and heavy versions of the basic math
fonts, as well as upright math “italic”. There are

also Greek letters for use in typesetting terms com-
monly used in physics, as well as regular and bold
script faces. Both MathTime distributions include
support for use with Plain TEX and ETEX2.09
(including code to link in Adobe Math Pi 2 and
Math Pi 6). Support under BETEX 2¢ is provided in
PSNFSS (see question 82) thanks to Frank Mittel-
bach and David Carlisle.

For a sample, see http://www.YandY.com/
download/mathplus.pdf

TM Math (14 fonts) MicroPress Inc.

TM Math is a family of serif fonts, inspired by
the Times (TM) typeface. TM Math comprises
the fonts necessary for mathematical typesetting
(maths italic, maths symbols and extensions) in nor-
mal and bold weights. The family also includes all
OT1 and T1 encoded text fonts of various shapes,
as well as fonts with most useful glyphs of the
TS1 encoding. Macros for using the fonts with
Plain TEX, BTEX 2.09 and current IATEX are pro-
vided. Bitmapped copies of the fonts are available
free, on CTAN.

For further details (and samples) see
http://www.micropress-inc.com/fonts/
tmmath/tmmain.htm

Belleek (3 fonts) Richard Kinch

Belleek is the upshot of Kinch’s thoughts on how
METAFONT might be used in the future: they were
published simultaneously as METAFONT source, as
Type 1 fonts, and as TrueType fonts. The fonts act
as “drop-in” replacements for the basic MathTime
set (as an example of “what might be done”).

The paper outlining Kinch’s thoughts, proceeding
from considerations of the ‘intellectual’ superiority
of METAFONT to evaluations of why its adoption
is so limited and what might be done about the
problem, is to be found at http://truetex.com/
belleek.pdf (the paper is a good read, but exhibits
the problems discussed in question 75 — don’t try
to read it on-screen in Acrobat reader).

PA Math PA Math is a family of serif fonts loosely based

on the Palatino (TM) typeface. PAMath comprises
the fonts necessary for mathematical typesetting
(maths italics, maths, calligraphic and oldstyle sym-
bols, and extensions) in normal and bold weights.
The family also includes all OT1, T1 encoded text
fonts of various shapes, as well as fonts with the
most useful glyphs of the TS1 encoding. Macros
for using the fonts with Plain TEX, IEXTEX 2.09 and
current I TEX are provided.

For further details (and samples) see
http://www.micropress-inc.com/fonts/
pamath/pamain.htm

mathpazo version 1.001 (5 fonts) by Diego Puga

The Pazo Math fonts are a family of type 1 fonts
suitable for typesetting maths in combination with
the Palatino family of text fonts. Four of the five
fonts of the distribution are maths alphabets, in up-
right and italic shapes, medium and bold weights;

32

the fifth font contains a small selection of “black-
board bold” characters (chosen for their mathemat-
ical significance). Support under BTEX 2¢ is avail-
able in PSNFSS (see question 82); the fonts are li-
censed under the GPL, with legalese permitting the
use of the fonts in published documents.

pzfonts set version 1.0 (26 fonts) by Young Ryu
The pxfonts set consists of

e virtual text fonts using Adobe Palatino (or the
URW replacement used by ghostscript) with
modified plus, equal and slash symbols;

e maths alphabets using times;

e maths fonts of all symbols in the computer
modern maths fonts (cmsy, cmmi, cmex and the
Greek letters of cmr)

e maths fonts of all symbols corresponding to the
AMS fonts (msam and msbm);

e additional maths fonts of various symbols.

The text fonts are available in OT1, T1 and LY1
encodings, and TS encoded symbols are also avail-
able. The sans serif and monospaced fonts supplied
with the txfonts set (see below) may be used with
pxfonts; the txfonts set should be installed when-
ever pxfonts are. ITEX, dvips and PDFTEX sup-
port files are included. The documentation (http:
//www.tex.ac.uk/tex-archive/fonts/pxfonts/
doc/pxfontsdocA4.pdf) is readily available.

tzfonts set version 3.1 (42 fonts) by Young Ryu
The txfonts set consists of

e virtual text fonts using Adobe Times (or the
URW replacement used by ghostscript) with
modified plus, equal and slash symbols;

e matching sets of sans serif and monospace
(‘typewriter’) fonts (the sans serif set is based
on Adobe Helvetica);

e maths alphabets using times;

e maths fonts of all symbols in the computer
modern maths fonts (cmsy, cmmi, cmex and the
Greek letters of cmr)

e maths fonts of all symbols corresponding to the
AMS fonts (msam and msbm);

e additional maths fonts of various symbols.

The text fonts are available in OT1, T1 and
LY1 encodings, and TS encoded symbols are also
available. IXTgEX, dvips and PDFTEX support
files are included. The documentation (http:
//www.tex.ac.uk/tex-archive/fonts/txfonts/
doc/txfontsdocA4.pdf) is readily available.

Adobe Lucida, LucidaSans and LucidaMath (12 fonts)
Lucida and LucidaMath are generally considered to
be a bit heavy. The three maths fonts contain only
the glyphs in the CM maths italic, symbol, and ex-
tension fonts. Support for using LucidaMath with
TEX is not very good; you will need to do some work
reencoding fonts etc. (In some sense this set is the
ancestor of the LucidaBright plus LucidaNewMath
font set.)

Proprietary fonts Various sources.

Since having a high quality font set in scalable out-
line form that works with TEX can give a publisher
a real competitive advantage, there are some pub-
lishers that have paid (a lot) to have such font sets
made for them. Unfortunately, these sets are not
available on the open market, despite the likelihood
that they’re more complete than those that are.

Mathptm and mathpple Alan Jeffrey, Walter Schmidt
and others.

This set contains maths italic, symbol, extension,
and roman virtual fonts, built from Adobe Times,
Symbol, Zapf Chancery, and the Computer Modern
fonts. The resulting mixture is not really entirely
acceptable, but can pass in some circumstances.
The real advantage is that the mathptm and math-
pple fonts are free, and the resulting PostScript files
can be freely exchanged. Support under BTEX 2¢ is
available in PSNFSS (see question 82).

The very limited selection of commercial maths font sets
is a direct result of the fact that a maths font has to be
explicitly designed for use with TEX and as a result it is
likely to lose some of its appeal in other markets. Fur-
thermore, the TEX market for commercial fonts is minute
(in comparison, for example, to Microsoft TrueType font
pack #1, which sold something like 10 million copies in a
few weeks after release of Windows 3.11!).

Text fonts in Type 1 format are available from many
vendors including Adobe, Monotype, Bitstream. Avoid
cheap rip-offs: not only are you rewarding unethical be-
haviour, destroying the cottage industry of innovative
type design, but you are also very likely to get junk. The
fonts may not render well (or at all under ATM), may not
have the ‘standard’ complement of 228 glyphs, or may not
include metric files (needed to make TFM files).

TrueType remains the “native” format for Windows.
Some TEX implementations such as TrueTEX (see ques-
tion 55) use TrueType versions of Computer Modern and
Times Maths fonts to render TEX documents in Windows
without the need for additional system software like ATM.

When choosing fonts, your own system environment
may not be the only one of interest. If you will be send-
ing your finished documents to others for further use,
you should consider whether a given font format will in-
troduce compatibility problems. Publishers may require
TrueType exclusively because their systems are Windows-
based, or Type 1 exclusively, because their systems are
based on the early popularity of that format in the pub-
lishing industry. Many service bureaus don’t care as long
as you present them with a finished print file for their
output device.

CM family collection: Browse fonts/cm/ps-
typel/bluesky

AMS font collection: Browse fonts/amsfonts/ps-typel
Belleek fonts: fonts/belleek/belleek.zip
eulerum. sty and supporting metrics: fonts/eulervm

humath (free bitmapped version):
fonts/micropress/hvmath

pzfonts: fonts/pxfonts

33

tmmath (free bitmapped version):
fonts/micropress/tmmath

tzfonts: fonts/txfonts

87 Including a PostScript figure in (I8)TEX

ITEX has a standard package for graphics inclusion, rota-
tion, colour, and other driver-related features. The pack-
age is documented in the second edition of Lamport’s
ETEX book, as well as in the IATEX Graphics Companion
(see question 22). The ITEX package is also available in
a form suitable for use with Plain TgX.

The distribution itself comes with documentation, and
a processed copy (grfguide.ps) is available in the distri-
bution so that users can read documentation without first
installing the package.

The graphics package comes with a relative, graphicx,
which provides more convenient means of scaling and oth-
erwise manipulating graphics. The packages are usually
configured to the DVI processor you use by means of a
.cfg file, but configuration by means of package options
is also possible. The range of types of graphical file you
may include differs according to the system you’re using.

The figures themselves do not become part of the
DVI file, but are only included when you use a DVI
to PostScript conversion program. The \special com-
mands (see question 38) used to pass pointers to the
graphics files, and other information, are potentially dif-
ferent for every DVI processor (which is why the graphics
package must be configured for the processor you use).

Since the \special commands used are typically not
their own, some DVI previewers can’t cope with them.
More modern ones (notably zdvi, MikTEX’s yap and
fpTEX’s windvi) can pass the figure to a properly con-
figured ghostcript installation for rendering into a bitmap
for screen viewing.

There are two rather good documents on CTAN ad-
dressing figure production, with rather different empha-
sis. Keith Reckdahl’s epslatex covers the standard BTEX
facilities, as well as some of the supporting packages, no-
tably subfigure and psfrag. Anil K. Goel’s “Figures in
BTEX” (figsinltz), covers the different ways in which you
might generate figures, and the old (KTEX 2.09) ways of
including them into documents.

epslatex.pdf: info/epslatex.pdf; the document
is also available in PostScript format as
info/epslatex.ps

figsinltz: info/figsinltx.ps
ghostscript: Browse nonfree/support/ghostscript

graphics: The whole bundle for WTEX (including
graphicz.sty) is found in
macros/latex/required/graphics; to
use the packages with Plain TEX, you should also
acquire:

graphicz. tex: macros/plain/graphics which
contains various wrappers and emulations of
commands for the use of the IATEX version.

psfrag.sty: macros/latex/contrib/supported/
psfrag

subfigure.sty: macros/latex/contrib/supported/
subfigure

88 Weird characters in dvips output

You've innocently generated output, using dvips, and
there are weird transpositions in it: for example, the fi
ligature has appeared as a £ symbol. This is an unwanted
side-effect of the precautions about generating PostScript
for PDF outlined in question 75. The -G1 switch dis-
cussed in that question is appropriate for Knuth’s text
fonts, but doesn’t work with text fonts that don’t follow
Knuth’s patterns (such as fonts supplied by Adobe).

If the problem arises, suppress the -G1 switch: if you
were using it explicitly, don’t; if you were using -Ppdf,
add -GO to suppress the implicit switch in the pseudo-
printer file.

N Bibliographies and citations

89 Creating a bibliography style

It is possible to write your own: the standard bibliog-
raphy styles are distributed in a commented form, and
there is a description of the language (see question 30).
However, it must be admitted that the language in which
BIBTEX styles are written is pretty obscure, and one
would not recommend anyone who’s not a confident pro-
grammer to write their own, though minor changes to an
existing style may be within the grasp of many.

If your style isn’t too ‘far out’, you can probably gen-
erate it by using the facilities of the custom-bib bundle.
This contains a file makebst . tex, which runs you through
a text menu to produce a file of instructions, with which
you can generate your own .bst file. This technique
doesn’t deal with entirely new styles of document (the
present author needed “standards committee papers” and
“ISO standards” for his dissertation; another commonly-
required type is the Web page — see question 93).

BIBTEX documentation: biblio/bibtex/distribs/doc

makebst.tex: Distributed with
macros/latex/contrib/supported/custom-bib

90 Capitalisation in BibTEX

The standard BIBTEX bibliography styles impose fixed
ideas about the capitalisation of titles of things in the
bibliography. While this is not unreasonable by BIBTEX’s
lights (the rules come from the Chicago Manual of Style)
it can be troublesome, since BIBTEX fails to recognise
special uses (such as acronyms).

The solution is to enclose the letter or letters, whose
capitalisation BIBTEX should not touch, in braces, as:

title = {The {THE} operating system},

Sometimes you find BIBTEX changing the case of a single
letter inappropriately. No matter: the technique can be

applied to single letters, as in:
title = {Te{X}niques and tips},

There’s more on the subject in the BIBTEX documenta-
tion (see question 30).

34

91 ‘String too long’ in BibTEX
The BiBTEX diagnostic “Warning—you’ve exceeded 1000,
the global-string-size, for entry foo” usually arises
from a very large abstract or annotation included in the
database. The diagnostic usually arises because of an in-
felicity in the coding of abstract.bst, or styles derived
from it. (One doesn’t ordinarily output annotations in
other styles.)

The solution is to make a copy of the style file (or get
a clean copy from CTAN — biblio/bibtex/contrib/
abstract.bst), and rename it (e.g., on a long file-name
system to abstract-long.bst). Now edit it: find func-
tion output.nonnull and

e change its first line (line 60 in the version on CTAN)
from "{ ’s :=" to "{ swap$", and

e delete its last line, which just says "s
the version on CTAN).

(line 84 in

Finally, change your \bibliographystyle command to
refer to the name of the new file.

This technique applies equally to any bibliography
style: the same change can be made to any similar
output.nonnull function.

If you’re reluctant to make this sort of change, the
only way forward is to take the entry out of the database,
so that you don’t encounter BIBTEX’s limit, but you may
need to retain the entry because it will be included in
the typeset document. In such cases, put the body of the
entry in a separate file:

@article{long.boring,
author = "Fred Verbose",

abstract =
}
In this way, you arrange that all BIBTEX has to deal with
is the file name, though it will tell TEX (when appropri-
ate) to include all the long text.

92 BibTEX doesn’t understand my lists of
names

"{\input{abstracts/long.tex}}"

BI1BTEX has a strict syntax for lists of authors’ (or ed-
itors’) names in the BIBTEX data file; if you write the
list of names in a “natural”’-seeming way, the chances are
you will confuse BIBTEX, and the output produced will
be quite different from what you had hoped.
Names should be expressed in one of the forms

First Last

Last, First

Last, Suffix, First
and lists of names should be separated with “and”. For
example:
AUTHOR = {Fred Q. Bloggs, John P. Doe \&

Robin Fairbairns}

falls foul of two of the above rules: a syntactically sig-
nificant comma appears in an incorrect place, and \& is
being used as a name separator. The output of the above
might be something like:

John P. Doe \& Robin Fairbairns Fred Q. Bloggs

because “John P. Doe & Robin Fairbairns” has become
the ‘first name’, while “Fred Q. Bloggs” has become the

‘last name’ of a single person. The example should have
been written:

AUTHOR = {Fred Q. Bloggs and John P. Doe and
Robin Fairbairns}

Some bibliography styles implement clever acrobatics
with very long author lists. You can force truncation
by using the pseudo-name “others”, which will usually
translate to something like “et al” in the typeset output.
So, if Mr. Bloggs wanted to distract attention from his
co-authors, he would write:

AUTHOR = {Fred Q. Bloggs and others}

93 Citing URLs with BibTEX

There is no citation type for URLs, per se, in the stan-
dard BIBTEX styles, though Oren Patashnik (the author
of BIBTEX) is considering developing one such for use
with the long-awaited BIBTEX version 1.0.

The actual information that need be available in
a citation of an URL is discussed at some length
in the publicly available on-line extracts of ISO 690—
2, available via http://www.nlc-bnc.ca/iso/tc46sc9/
standard/690-2e.htm; the techniques below do not sat-
isfy all the requirements of ISO 690-2, but they offer a
solution that is at least available to users of today’s tools.

Until the new version arrives, the simplest technique
is to use the howpublished field of the standard styles’
@misc function. Of course, the strictures about typeset-
ting URLs (see question 134) still apply, so the entry will
look like:

@miscq{...,
howpublished = "\url{http://...}"
}

Another possibility is that some conventionally-
published paper, technical report (or even book) is also
available on the Web. In such cases, a useful technique is
something like:

@techreport{...,
note =

}

There is good reason to use the url or hyperref pack-
ages in this context, since (by default) the \url command
ignores spaces in its argument. BIBTEX has a habit of
splitting lines it considers excessively long, and if there
are no space characters for it to use as ‘natural’ break-
points, BIBTEX will insert a comment (‘%4’) character ...
which is an acceptable character in an URL, so that \url
will typeset it. If you're using url, the way around the
problem is to insert odd spaces inside the URL itself in the
.bib file, to enable BIBTEX to make reasonable decisions
about breaking the line. Note that the version of \url
that comes with recent versions of the hyperref package
doesn’t suffer from the ‘%-end of line’ problem: hyperref
spots the problem, and suppresses the unwanted charac-
ters.

"Also available as \url{http://...}"

A possible alternative approach is to use the harvard
package (if its citation styles are otherwise satisfactory
for you). Harvard bibliography styles all include a “url”

35

field in their specification; however, the typesetting of-
fered is somewhat feeble (though it does recognise and
use LaTeX2HTML macros if they are available, to create
hyperlinks).

harvard: macros/latex/contrib/supported/harvard

hyperref: macros/latex/contrib/supported/
hyperref

url: macros/latex/contrib/other/misc/url.sty

94 Using BibTEX with Plain TpX

The file btxmac. tex contains macros and documentation
for using BIBTEX with Plain TEX, either directly or with

Eplain (see question 14). See question 30 for more infor-
mation about BIBTEX itself.

btazmac. tex: macros/eplain/btxmac.tex

95 Separate bibliographies per chapter?

A separate bibliography for each ‘chapter’ of a docu-
ment can be provided with the package chapterbib (which
comes with a bunch of other good bibliographic things).
The package allows you a different bibliography for each
\included file (i.e., despite the package’s name, the
availability of bibliographies is related to the component
source files of the document rather than to the chapters
that logically structure the document).

The package bibunits ties bibliographies to logical
units within the document: the package will deal with
chapters and sections (as defined by KTEX itself) and
also defines a bibunit environment so that users can se-
lect their own structuring.

chapterbib.sty: macros/latex/contrib/supported/
cite

bibunits.sty: macros/latex/contrib/supported/
bibunits

96 Multiple bibliographies?

If you’re thinking of multiple bibliographies tied to some
part of your document (such as the chapters within the
document), please see question 95.

For more than one bibliography, there are three op-
tions.

The multibbl package offers a very simple interface: it
redefines the bibliography commands so that each time
you use any one of them, you tell it which bibliography
you want the citations to go to or to come from. The
\bibliography command itself also takes a further extra
argument that says what title to use for the resulting sec-
tion or chapter (i.e., it patches \refname and \bibname —
see question 187 — in a babel-safe way.

The multibib package allows you to define a se-
ries of “additional topics”, each of which comes with
its own series of bibliography commands (e.g., a topic
“sec” for secondary literature would have commands
\citesec, \nocitesec, \bibliographystylesec and
\bibliographysec. You can pull citations from any bib-
liography (.bib file) into any one of the multiple bibli-
ographies (indeed, they may all come from the same .bib
file).

The bibtopic package allows you separately to cite sev-
eral different bibliographies. At the appropriate place in

your document, you put a sequence of btSect environ-
ments (each of which specifies a bibliography database to
scan) to typeset the separate bibliographies. Thus, one
might have

\begin{btSect}{books}
\section{References from books}
\btPrintCited

\end{btSect}
\begin{btSect}{articles}
\section{References from articles}
\btPrintCited

\end{btSect}

There is also a command \btPrintNotCited, which gives
the rest of the content of the database (if nothing has
been cited from the database, this is equivalent to TEX
standard \nocitex).

bibtopic.sty: macros/latex/contrib/supported/
bibtopic

multibib.sty: macros/latex/contrib/supported/
multibib

97 Putting bibliography entries in text

This is a common requirement for journals and other pub-
lications in the humanities. Sometimes the requirement
is for the entry to appear in the running text of the docu-
ment, while other styles require that the entry appear in
a footnote.

Options for entries in running text are

e The package bibentry, which puts slight restrictions
on the format of entry that your .bst file generates,
but is otherwise undemanding of the bibliography
style.

e The package inlinebib, which requires that you use
its inlinebib.bst

e The package jurabib, which was originally target-
ted at German law documents, and has comprehen-
sive facilities for the manipulation of citations. The
package comes with four bibliography styles that
you may use: jurabib.bst, jhuman.bst and two
Chicago-like ones.

Options for entries in footnotes are

e The package footbib, and
e The package jurabib, again.

bibentry.sty: Distributed with
macros/latex/contrib/supported/natbib

footbib.sty: macros/latex/contrib/supported/
footbib

inlinebidb.sty: biblio/bibtex/contrib/inlinebib

jurabib.sty: macros/latex/contrib/supported/
jurabib

98 Sorting and compressing citations

If you give INTEX \cite{fred, joe,harry,min}, its de-
fault commands could give something like “[2,6,4,3]”; this
looks awful. One can of course get the things in order by
rearranging the keys in the \cite command, but who

36

wants to do that sort of thing for no more improvement
than “[2,3,4,6]"7

The cite package sorts the numbers and detects con-
secutive sequences, so creating “[2-4,6]”. The natbib
package, with the numbers and sort&compress options,
will do the same when working with its own numeric bib-
liography styles (plainnat.bst and unsrtnat.bst).

If you might need to make hyperreferences to your
citations, cite isn’t adequate. If you add the hypernat
package:

\usepackagel...]{hyperref}
\usepackage [numbers, sort&compress] {natbib}
\usepackage{hypernat}

\bibliographystyle{plainnat}
the natbib and hyperref packages will interwork.

cite.sty: macros/latex/contrib/supported/cite

hypernat.sty: macros/latex/contrib/supported/
misc/hypernat.sty

hyperref.sty: macros/latex/contrib/supported/
hyperref

plainnat.bst: macros/latex/contrib/supported/
hyperref

unsrtnat.bst: macros/latex/contrib/supported/
hyperref

99 Multiple citations

A convention sometimes used in physics journals is to
“collapse” a group of related citations into a single entry
in the bibliography. BIBTEX, by default, can’t cope with
this arrangement, but the mcite package deals with the
problem.

The package overloads the \cite command, so that
citations of the form \cite{paperl,paper2} appear in
the document as a single citation, and appear arranged
appropriately in the bibliography itself. You need to al-
ter the bibliography style (.bst) file you use; the pakage
documentation tells you how to do that.

mcite.sty: macros/latex/contrib/supported/mcite

100 Listing all my BibTgX entries

KTEX and BIBTEX co-operate to offer special treatment
of this requirement. The command \nocite{*} is spe-
cially treated, and causes BIBTEX to generate bibliog-
raphy entries for every entry in each .bib file listed in
your \bibliography statement, so that after a IXTEX-
BIBTEX-IXTEX sequence, you have a document with the
whole thing listed.

Note that KTEX doesn’t produce “Citation ...
undefined” or “There were undefined references”
warnings in respect of \nocite{*}. This isn’t a problem
if you're running IXTEX “by hand” (you know exactly how
many times you have to run things), but the lack might
confuse automatic processors that scan the log file to de-
termine whether another run is necessary.

101 Making HTML of your Bibliography

A neat solution is offered by the noTeX bibliography
style. This style produces a .bbl file which is in fact
a series of HTML ‘P’ elements of class noTeX, and which
may therefore be included in an HTML file. Provision is
made for customising your bibliography so that its content
when processed by noTeX is different from that presented
when it is processed in the ordinary way by (I&)TEX.

A more conventional translator is the awk script
bbl2html, which translates the .bbl file you’ve generated:
a sample of the script’s output may be viewed on the web,
at http://rikblok.cjb.net/lib/refs.html

bbl2html.awk: biblio/bibtex/utils/bbl2html.awk
noTeX.bst: biblio/bibtex/utils/noTeX.bst

O Installing (I2)TEX files

102 Installing a new package

The first step in installing a new package for your ITEX
system is to find where it is (see question 48) and then to
get it, usually from CTAN (see question 49).

Ordinarily, you should download the whole distribu-
tion directory; the only occasion when this is not neces-
sary is when you are getting something from one of the
(IMTEX contributed “misc” directories on CTAN; these
directories contain collections of single files, which are
supposedly complete in themselves.

A small package (smallpack) might be just a single
.sty file (typically smallpack.sty) with the usage in-
structions either included as comments in the file or in a
seperate user manual or README file. More often a package
pack will come as a pair of files, pack.ins and pack.dtx,
written to be used with the IXTEX doc system. The pack-
age code must be extracted from these files. If there is a
README file as part of the package distribution, read it!

In the doc system, the user manual and documented
package code is in the .dtx file, and the . ins file contains
KTEX instructions on what code should be extracted from
the .dtx file. To unpack a doc package (pack), do the fol-
lowing:

e Run latex on pack.ins. This will generate one or
more files (normally a pack.sty file but there may
be others depending on the particular package).

e Run latex on pack.dtz as a start to getting the user
manual and possibly a commented version of the
package code.

e Run latex again on pack.dtz, which should resolve
any references and generate a Table of Contents if
it was called for.

o IANTEX may have said “No file pack.ind”; this is
the source for the command index; if you want the
index, process the raw material with:

makeindex -s gind.ist pack
and run KTEX again.

e Print and read pack.dvi

Sometimes a user manual is supplied seperately from the
.dtx file. Process this after doing the above, just in case
the user manual uses the package it is describing.

37

Almost the final stage of the installation is to put the
package file(s) ‘where IATEX can find them’. Where the
magic place is, and how you put the files there depends
on your particular I¥TEX system and how it is set up (see
question 43 for general principles, question 103 for specific
advice).

The final stage is to tell WTEX that there is a new file,
or files, that it should be able to go and find. Most free
KTEX systems maintain a database of the names and lo-
cations of latex-related files to enable faster searching. In
these systems the database must be updated, using the
script or program provided with the distribution for this
purpose.

teTEX, fpTEX Run:

texhash

web2c On a current web2c¢ distribution, texhash ought
to work; if it doesn’t, run:
mktexlsr

MikTEX On a MikTeX distribution earlier than v2.0,
do:
Start—Programs—MikTeX—Maintenance—
Refresh filename database
or get a DOS window and run:
initexmf --update-fndb
On a MikTeX distribution v2.0 or later, do:
Start—Programs—MikTeX 2—MikTeX Options,
and press the Update filename database button.

Remember that a \usepackage{pack} command
must be put in the preamble of each document in which
you want to use the pack package.

103 Where to put new files

Where precisely you put files that you have down-
loaded does depend on what TEX distribution you have.
However, assuming that you have one of the modern
TDS-compliant distributions (such as teTgX, fpTEX or
mikTEX) there are some general rules that you can fol-
low:

(1) Always install new files in a local texmf tree. The
root directory will be named something like:

teTeX: /usr/share/texmf-local/
fpTeX: c:\fptex\texmf.local\
mikTeX: c:\localtexmf\

Let’s write $TEXMF for this root, whatever it is for your
system.

(2) In your local texmf tree, imitate the directory struc-
ture in your main tree. Here’s some examples of where
files of given extensions should go:

.sty, .cls or .fd: $TEXMF/tex/latex/<package>/
.dvi, .ps or .pdf: $TEXMF/doc/latex/<package>/
.tfm: $TEXMF/fonts/tfm/<supplier>//

.vf: $TEXMF/fonts/vf/<supplier>//

.afm: $TEXMF/fonts/afm/<supplier>//
.pfb: $TEXMF/fonts/typel/<supplier>//
.ttf: $TEXMF/fonts/truetype/<supplier>//

Where of course (package), (font) and (supplier) depend
upon what’s appropriate for the individual file.

104 “Temporary” installation of (IA)TEX files

Operating systems and applications need to know where
to find files: many files that they need are “just named” —
the user doesn’t necessarily know where they are, but
knows to ask for them. The commonest case, of course,
is the commands whose names you type to a shell (yes,
even Windows’ “MS-DOS prompt”) are using a shell to
read what you type: many of the commands simply in-
volve loading and executing a file, and the PATH variable
tells the shell where to find those files.

Modern TEX implementations come with a bunch of
search paths built in to them. In most circumstances
these paths are adequate, but one sometimes needs to ex-
tend them to pick up files in strange places: for example,
we may wish to try a new bundle of packages before in-
stalling them ‘properly’ (see question 102). To do this,
we need to change the relevant path as TEX perceives
it. However, we don’t want to throw away TEX’s built-in
path (all of a sudden, TEX won’t know how to deal with
all sorts of things).

To extend a TEX path, we define an operating system
environment variable in ‘path format’, but leaving a gap
which TEX will fill with its built-in value for the path.
The commonest case is that we want to place our exten-
sion in front of the path, so that our new things will be
chosen in preference, so we leave our ‘gap to be filled’ at
the end of the environment variable. The syntax is simple
(though it depends which shell you’re actually using): so
on a Unix-like system, using the bash shell, the job might
be done like:

export TEXINPUTS=/tmp:

while in a Windows system, within a MS-DOS window, it
would be:

set TEXINPUTS=C:/temp;

In either case, we're asking TEX to load files from the
root disc temporary files directory; in the Unix case, the
“empty slot” is designated by putting the path separator
‘:” on its own at the end of the line, while in the Windows
case, the technique is the same, but the path separator is

(98]
y .

Note that in either sort of system, the change will
only affect instances of TEX that are started from the
shell where the environment variable was set. If you run
TEX from another window, it will use the original input
path. To make a change of input path that will “stick”
for all windows, set the environment variable in your lo-
gin script or profile (or whatever) in a Unix system and
log out and in again, or in autoexec.bat in a Windows
system, and reboot the system.

While all of the above has talked about where TEX
finds its macro files, it’s applicable to pretty much any
sort of file any TEX-related program reads — there are
lots of these paths, and of their corresponding environ-
ment variables. In a webZ2c-based system, the copious
annotations in the texmf.cnf system configuration file
help you to learn which path names correspond to which
type of file.

38

P Adjusting the typesetting

P.1 Alternative document classes
105 Formatting a thesis in BTEX

Thesis styles are usually very specific to your University,
so it’s usually not profitable to ask around for a package
outside your own University. Since many Universities (in
their eccentric way) still require double-spacing, you may
care to refer to question 127. If you want to write your
own, a good place to start is the University of California
style, but it’s not worth going to a lot of trouble. (If of-
ficials won’t allow standard typographic conventions, you
won’t be able to produce an sesthetically pleasing docu-
ment anyway!)

UC thesis style: macros/latex/contrib/supported/
ucthesis

106 Setting papers for journals

Publishers of journals have a wide range of requirements
for the presentation of papers, and while many publishers
do accept electronic submissions in (I4)TEX, they don’t
often submit recommended macros to public archives.

Nevertheless, there are considerable numbers of
macros of one sort or another available on CTAN; search-
ing for your journal name in the CTAN catalogue (see
question 50) may well turn up what you're seeking.

Failing that, you may be well advised to contact the
prospective publisher of your paper; many publishers have
macros on their own web sites, or otherwise available only
upon application.

Check that the publisher is offering you macros suit-
able to an environment you can use: a few still have
no macros for current KIEX, for example, claiming that
ETEX 2.09 is good enough. ..

Some publishers rekey anything sent them anyway, so
that it doesn’t really matter what macros you use. Others
merely encourage you to use as few extensions of a stan-
dard package as possible, so that they will find it easy to
transform your paper to their own internal form.

107 A ‘report’ from lots of ‘article’s

This is a requirement, for example, if one is preparing the
proceedings of a conference whose papers were submitted
in A TRX.

The nearest thing to a canned solution is Peter Wil-
son’s combine class; it defines the means to ‘\import’
entire documents, and provides means of specifying sig-
nificant features of the layout of the document, as well as a
global table of contents, and so on. An auxiliary package,
combinet, allows use of the \titles and \authors (etc.)
of the \imported documents to appear in the global table
of contents.

A more ‘raw’ toolkit is offered by Matt Swift’s
includex and moredefs packages, both part of the
frankenstein bundle) offer a possible way forward.

Includex enables you to ‘\includedoc’ complete arti-
cles (in the way that you ‘\include’ chapter files in an
ordinary report). It doesn’t do the whole job for you,
though. You need to analyse the package use of the indi-
vidual papers, and ensure that a consistent set is loaded
in the preamble of the main report.

A completely different approach is to use the pdfpages
package, and to include articles submitted in PDF format
into a a PDF document produced by PDFETEX. The
package defines an \includepdf command, which takes
arguments similar to those of the \includegraphics
command. With keywords in the optional argument of
the command, you can specify which pages you want to
be included from the file named, and various details of
the layout of the included pages.

combine.cls: macros/latex/contrib/supported/
combine

combinet.sty: macros/latex/contrib/supported/

combine

includex. sty: Distributed in the “unsupported”
part of macros/latex/contrib/supported/
frankenstein

moredefs.sty: Distributed as part of macros/latex/
contrib/supported/frankenstein

pdfpages.sty: macros/latex/contrib/supported/
pdfpages

108 Curriculum Vitae (Resumé)

A framework class, vita, for Curricula Vitae is provided
by Andrej Brodnik.

The class can be customised both for subject (example
class option files are offered for both computer scientists
and singers), and for language (both the options provided
are available for both English and Slovene). Extensions
may be written by creating new class option files, or by us-
ing macros defined in the class to define new entry types,
ete.

Didier Verna’s class, curve, is based on a model in
which the CV is made of a set of rubrics (each one deal-
ing with a major item that you want to discuss, such as
‘education’, ‘work experience’, etc. The class’s documen-
tation is supported by a couple of example files, and an
emacs mode is provided.

curve.cls: macros/latex/contrib/supported/curve

vita.cls: macros/latex/contrib/other/vita

109 Letters and the like

KTRX itself provides a letter document class, which is
widely disliked; the present author long since gave up
trying with it. If you nevertheless want to try it, but
are irritated by its way of vertically-shifting a single-page
letter, try the following hack:

\makeatletter

\let\@texttop\relax

\makeatother

in the preamble of your file.

Doing-it-yourself is a common strategy; Knuth (for
use with plain TgX, in the TgXbook), and Kopka and
Daly (in their Guide to IXTEX) offer worked examples.

Nevertheless, there are contributed alternatives — in
fact there are an awfully large number of them: the fol-
lowing list, of necessity, makes but a small selection.

The largest, most comprehensive, class is newlfm; the
1fm part of the name implies that the class can create

39

letters, faxes and memoranda. The documentation is vo-
luminous, and the package seems very flexible.

Axel Kielhorn’s akletter class is the only other one,
recommended for inclusion in this FAQ, whose documen-
tation is available in English.

The dinbrief class, while recommended, is only docu-
mented in German.

There are letter classes in each of the excellent koma-
script (scrlettr: documentation is available in English)
and ntgclass (brief: documentation in Dutch only) bun-
dles. While these are probably good (since the bundles
themselves inspire trust) they’ve not been specifically rec-
ommended by any users.

akletter.cls: macros/latex/contrib/supported/
akletter

brief.cls: Part of the macros/latex/contrib/
supported/ntgclass bundle

dinbrief.cls: macros/latex/contrib/supported/
dinbrief

newl fm.cls: macros/latex/contrib/supported/
newlfm

scrlettr.cls: Part of the
macros/latex/contrib/supported/koma-script
bundle

P.2 Document structure
110 The style of document titles

Limited resources in the titlepage option/environment in
the standard styles, inflexibility of \maketitle... non-
standard things in the title (such as logo images, etc.)

The titling package provides a number of facilities that
permit manipulation of the appearance of a \maketitle
command, the \thanks commands within it, and so on.
The package also defines a titlingpage environment,
that offers something in between the standard classes’
titlepage option and the titlepage environment, and
is itself somewhat configurable.

titling.sty: macros/latex/contrib/supported/
titling

111 The style of section headings

Suppose that the editor of your favourite journal has
specified that section headings must be centred, in small
capitals, and subsection headings ragged right in italic,
but that you don’t want to get involved in the sort of
programming described in The KRTEX Companion (see
question 22; the programming itself is discussed in ques-
tion 191). The following hack will probably satisfy your
editor. Define yourself new commands

\newcommand{\ssection} [1]{%
\section[#1]{\centering\sc #1}}
\newcommand{\ssubsection} [1]{%
\subsection[#1]{\raggedright\it #1}}
and then use \ssection and \ssubsection in place of
\section and \subsection. This isn’t perfect: section
numbers remain in bold, and starred forms need a sepa-
rate redefinition. Also, this will not work if you are using
the prototype NFSS with KITEX2.09, because the font-
changing commands behave differently there.

The package sectsty provides an easy-to-use set of
tools to do this job, while the package titlesec permits
more advanced usage as well. (Titlesec comes with a sec-
ond package, titletoc, which is used to adjust the format
of table of contents entries.)

The fncychap package provides a nice collection of cus-
tomised chapter heading designs. The anonchap package
provides a simple means of typesetting chapter headings
“like section headings” (i.e., without the “Chapter” part
of the heading); the tocbibind package provides the same
commands, in pursuit of another end.

anonchap.sty: macros/latex/contrib/supported/
misc/anonchap.sty

fnecychap. sty: macros/latex/contrib/supported/
fncychap

sectsty.sty: macros/latex/contrib/supported/
sectsty

titlesec.sty: macros/latex/contrib/supported/
titlesec

tocbibind. sty: macros/latex/contrib/supported/
tocbibind

112 Indent after section headings

ETEX implements a style that doesn’t indent the first
paragraph after a section heading. There are coherent
reasons for this, but not everyone likes it. The indentfirst
package suppresses the mechanism, so that the first para-
graph is indented.

indent first.sty: Distributed as part of
macros/latex/required/tools

113 How to create a \subsubsubsection

BTEX’s set of “sections” stops at the level of
\subsubsection. This reflects a design decision by Lam-
port — for, after all, who can reasonably want a section
with such huge strings of numbers in front of it?

In fact, BTEX standard classes do define “sectioning”
levels lower than \subsubsection, but they don’t for-
mat them like sections (they’re not numbered, and the
text is run-in after the heading). These deeply inferior
section commands are \paragraph and \subparagraph;
you can (if you must) arrange that these two commands
produce numbered headings, so that you can use them as
\subsubsubsections and lower.

The titlesec allows you to adjust the definitions of the
sectioning macros, and it may be used to transform a
\paragraph’s typesetting so that it looks like that of a
\section.

If you want to program the change yourself, you’ll
find that the commands (\section all the way down
to \subparagraph) are defined in terms of the inter-
nal \@startsection command, which takes 6 arguments.
Before attempting this sort of work, you are well ad-
vised to read the IATEX sources (1tsect.dtx in the BTEX
distribution) and the source of the standard packages
(classes.dtx). The KTEX companion (see question 22)
discusses use of \@startsection for this sort of thing.

IMTEX source: macros/latex/base

titlesec.sty: macros/latex/contrib/supported/
titlesec

40

114 The style of captions

Changes to the style of captions may be made by redefin-
ing the commands that produce the caption. So, for ex-
ample, \fnum@figure (which produces the float number
for figure floats) may be redefined:

\renewcommand{\fnum@figurel}y,
{\textbf{Fig. \thefigure}}

which will cause the number to be typeset in bold face.
(Note that the original definition used \figurename —
see question 187.) More elaborate changes can be made
by patching the \caption command, but since there are
packages to do the job, such changes (which can get rather
tricky) aren’t recommended for ordinary users.

The float package provides some control of the ap-
pearance of captions, though it’s principally designed for
the creation of non-standard floats). The caption2 and
ccaption (note the double “c”) packages provide a range
of different formatting options; ccaption is the more mod-
ern and comprehensive, and also provides ‘continuation’
captions and captions that can be placed outside of float
environments.

caption2.sty: macros/latex/contrib/supported/
caption; note that caption2’s documentation is
incomplete, and the documentation of the older
caption should be typeset as well as that of the
newer package.

ccaption.sty: macros/latex/contrib/supported/
ccaption

float.sty: macros/latex/contrib/supported/float

115 Alternative head- and footlines in BTEX

The standard I¥TEX document classes define a small set of
‘page styles” which (in effect) specify head- and footlines
for your document. The set defined is very restricted, but
KTEX is capable of much more; people occasionally set
about employing ETEX facilities to do the job, but that’s
quite unnecessary — Piet van Qostrum has already done
the work.

The package fancyhdr provides simple mechanisms for
defining pretty much every head- or footline variation
you could want; the directory also contains some (rather
good) documentation and one or two smaller packages.
Fancyhdr also deals with the tedious behaviour of the
standard styles with initial pages (see question 122), by
enabling you to define different page styles for initial and
for body pages.

fancyhdr.sty: macros/latex/contrib/supported/
fancyhdr

116 Changing the margins in BTEX

Changing the size of the body of a W TEX document’s text
is a surprisingly difficult task: the best advice to the be-
ginner is “don’t do it”. There are interactions between
fundamental TEX constraints, constraints related to the
design of IMTEX, and good typesetting and design prac-
tice, that mean that any change must be very carefully
considered, both to ensure that it “works” and to ensure
that the result is pleasing to the eye.

Lamport’s warning in his section on ‘Customizing the
Style’ needs to be taken seriously. One-inch margins on
A4 paper are fine for 10- or 12-pitch typewriters, but not
for 10pt (or even 11lpt or 12pt) type because readers find
such wide, dense, lines difficult to read: there should ide-
ally be no more than 75 characters per line (though the
constraints change for two-column text).

KTEX’s controls allow you to change the distance from
the edges of a page to the left and top edges of your type-
set text, and the width and height of the text. Chang-
ing the last two requires more skill than you might ex-
pect: the height should bear a certain relationship to
\baselineskip, and the width should be constrained as
mentioned above.

The controls are expressed as a set of page parame-
ters; they are somewhat complex, and it is easy to get
their interrelationships wrong when redefining the page
layout. The layout package defines a \layout command
which draws a diagram of your existing page layout, with
the dimensions (but not their interrelationships) shown.
This FAQ recommends that you use a package to estab-
lish consistent settings of the parameters: the interrela-
tionships are taken care of in the established packages,
without you needing to think about them.

The ‘ultimate’ tool for adjusting the dimensions and
position of the printed material on the page is the
geometry package; a very wide range of adjustments of the
layout may be relatively straightforwardly programmed,
and documentation in the .dtx file (see question 39) is
good and comprehensive.

Somewhat simpler to use is the vmargin package,
which has a canned set of paper sizes (a superset of that
provided in BTEX 2¢), provision for custom paper, margin
adjustments and provision for two-sided printing.

If you're still eager to “do it yourself”, start by fa-
miliarising yourself with KTEX’s page layout parame-
ters. For example, see section C.5.3 of the KTEX manual
(pp. 181-182), or corresponding sections in many of the
other good IXTEX manuals (see question 22). The parame-
ters \oddsidemargin and \evensidemargin are so-called
because it is conventionally taken that odd-numbered
pages appear on the right-hand side of a two-page spread
(‘recto’) and even-numbered pages on the left-hand side
(‘verso’). Both parameters refer to the left-hand margin;
the right-hand margin is specified by implication, from
the size of \textwidth. The origin in DVI coordinates is
one inch from the top of the paper and one inch from the
left side; positive horizontal measurements extend right
across the page, and positive vertical measurements ex-
tend down the page. Thus, for margins closer to the left
and top edges of the page than 1 inch, the correspond-
ing parameters, i.e., \evensidemargin, \oddsidemargin,
\topmargin, can be set to negative values.

Another surprise is that you cannot change the width
or height of the text within the document, simply by mod-
ifying the text size parameters. The simple rule is that
the parameters should only be changed in the preamble of
the document, i.e., before the \begin{document} state-
ment. To adjust text width within a document we define
an environment:

\newenvironment{changemargin}[2]{%

41

\begin{list}{}{%
\setlength{\topsep}{Opt}/
\setlength{\leftmargin}{#11}/
\setlength{\rightmargin}{#2}
\setlength{\listparindent}{\parindent},
\setlength{\itemindent}{\parindentl}
\setlength{\parsep}{\parskipl}¥%
Y
\item[]}{\end{list}}
This environment takes two arguments, and will indent
the left and right margins, respectively, by the parame-
ters’ values. Negative values will cause the margins to be
narrowed, so \begin{changemargin}{-1cm}{-1cm} nar-
rows the left and right margins by lcm.

The chngpage package provides ready-built commands
to do the above; it includes provision for changing the
shifts applied to your text according to whether you’re
on an odd or an even page of a two-sided document.
The package’s documentation (in the file itself) suggests
a strategy for changing text dimensions between pages —
as mentioned above, changing the text dimensions within
the body of a page may lead to unpredictable results.

chngpage.sty: macros/latex/contrib/supported/
misc/chngpage.sty

geometry.sty: macros/latex/contrib/supported/
geometry

layout.sty: Distributed as part of
macros/latex/required/tools

umargin.sty: macros/latex/contrib/supported/
vmargin

117

Floating figures and tables ordinarily come out the same
width as the page, but in two-column documents they’re
restricted to the width of the column. This is sometimes
not good enough; so there are alternative versions of the
float environments — in two-column documents, figurex
provides a floating page-wide figure (and table* a page-
wide table) which will do the necessary.

The “¥”ed float environments can only appear at the
top of a page, or on a whole page — h or b float placement
directives are simply ignored.

Unfortunately, page-wide equations can only be ac-
commodated inside float environments. You should in-
clude them in figure environments, or use the float or
ccaptionpackage to define a new float type.

Wide figures in two-column documents

ccaption.sty: macros/latex/contrib/supported/
ccaption

float.sty: macros/latex/contrib/supported/float
118 1-column abstract in 2-column document

One often requires that the abstract of a paper should ap-
pear across the entire page, even in a two-column paper.
The required trick is:

\documentclass[twocolumn] {article}

\begin{document}

... % \author, etc

\twocolumn[
\begin{@twocolumnfalse}

\maketitle
\begin{abstract}

\end{abstract}
\end{@twocolumnfalse}
]

Unfortunately, with the above \thanks won’t work in the
\author list. If you need such specially-numbered foot-
notes, you can make them like this:

\title{Demonstration}
\author{Me, You\thanks{}}
\twocolumn [
. as above ...
]
{
\renewcommand{\thefootnotel}
{\fnsymbol{footnote}}
\footnotetext[1]{Thanks for nothing}
}

and so on.

As an alternative, among other facilities the abstract
package (available from macros/latex/contrib/
supported/abstract) provides a \saythanks command
and a onecolabstract environment which remove the
need to fiddle with the \thanks and footnoting. They
can be used like this:

\twocolumn [

\maketitle % full width title
\begin{onecolabstract} % full width abstract
. text
\end{onecolabstract}
]
\saythanks % typeset any \thanks

119 Really blank pages between chapters

Book (by default) and report (with openright class
option) ensure that each chapter starts on a right-
hand (recto) page; they do this by inserting a
\cleardoublepage command between chapters (rather
than a mere \clearpage). The empty page thus created
gets to have a normal running header, which some people
don’t like.

The (excellent) fancyhdr manual covers this is-
sue, basically advising the creation of a command
\clearemptydoublepage:

\let\origdoublepage\cleardoublepage
\newcommand{\clearemptydoublepagel}{’,
\clearpage
{\pagestyle{empty}\origdoublepagel}’
}
The “obvious” thing is then to use this command to
replace \cleardoublepage in a patched version of the
chapter command. (Make a package of your own con-
taining a copy of the command out of the class.) Thisisn’t
particularly difficult, but you can instead simply subvert
\cleardoublepage (which isn’t often used elsewhere):

\let\cleardoublepage\clearemptydoublepage

Note: this command works because \clearemptydoublepags

uses a copy of \cleardoublepage: see question 190 for
explanation.

42

Note that the KOMA-Script replacement for the book
class (scrbook) offers class options that control the ap-
pearance of these empty pages, and Peter Wilson’s
memoir class has similar facilities.

memoir.cls: macros/latex/contrib/supported/
memoir

scrbook.cls: Part of macros/latex/contrib/
supported/koma-script

120 Balancing columns at the end of a
document

The twocolumn option of the standard classes causes
ETEX to set the text of a document in two columns. How-
ever, the last page of the document typically ends up with
columns of different lengths — such columns are said to
be “unbalanced”. Many (most?) people don’t like unbal-
anced columns.

The simplest solution to the problem is to use the
multicol package in place of the twocolumn option, as
multicol balances the columns on the final page by de-
fault. However, the use of multicol does come at a cost:
its special output routine disallows the use of in-column
floats, though it does still permit full-width (e.g., figure*
environment) floats.

As a result, there is a constant push for a means of
balancing columns at the end of a twocolumn document.
Of course, the job can be done manually: \pagebreak in-
serted at the appropriate place on the last page can often
produce the right effect, but this seldom appeals, and if
the last page is made up of automatically-generated text
(for example, bibliography or index) inserting the com-
mand will be difficult.

The flushend package offers a solution to this problem.
It’s a somewhat dangerous piece of macro code, which
patches one of the most intricate parts of the ITEX ker-
nel without deploying any of the safeguards discussed in
question 190. The package only changes the behaviour
at end document (its \flushend command is enabled by
default), and one other command permits adjustment of
the final balance; other packages in the bundle provide
means for insertion of full width material in two-column
documents.

The balance package also patches the output routine
(somewhat more carefully than flushend).

The user should be aware that any of these packages
are liable to become confused in the presence of floats:
if problems arise, manual adjustment of the floats in the
document is likely to be necessary. It is this difficulty
(what’s required in any instance can’t really be expressed
in current IATEX) that led the author of multicol to sup-
press single-column-wide floats.

balance.sty: Distributed as part of
macros/latex/contrib/other/preprint

flushend. sty: Distributed as part of
macros/latex/contrib/supported/sttools

multicol.sty: Distributed as part of
macros/latex/required/tools

P.3 Page layout
121 How to get rid of page numbers

The package nopageno will suppress page numbers in a
whole document.

To suppress page numbers from a single page, use
\thispagestyle{empty} somewhere within the text of
the page. (Note that \maketitle and \chapter both use
\thispagestyle internally, so you need to call it after
you've called them.)

To suppress page numbers from a sequence of pages,
you may use \pagestyle{empty} at the start of the se-
quence, and restore the original page style at the end.
Unfortunately, you still have to use \thispagestyle af-
ter any \maketitle or \chapter command.

An alternative is to use the rather delightful
\pagenumbering{gobble}; this has the simple effect that
any attempt to print a page number produces nothing,
so there’s no issue about preventing any part of ITEX
from printing the number. However, the \pagenumbering
command does have the side effect that it resets the page
number (to 1), which may be undesirable.

nopageno: macros/latex/contrib/supported/
carlisle/nopageno.sty

122 \pagestyle{empty} on first page in BTEX

If you use \pagestyle{empty}, but the first page is num-
bered anyway, you are probably using the \maketitle
command too. The behaviour is not a bug but a fea-
ture! The standard IXTEX styles are written so that ini-
tial pages (pages containing a \maketitle, \part, or
\chapter) have a different page style from the rest of the
document; to achieve this, the commands internally issue
\thispagestyle{plain}. This is usually not acceptable
behaviour if the surrounding page style is ‘empty’.
Possible workarounds include:

e Put \thispagestyle{empty} immediately after the
\maketitle command, with no blank line between
them.

e Use the fancyhdr package, which allows you to cus-
tomise the style for initial pages independently of
that for body pages.

e Use the nopageno package, which suppresses all
page numbers by affecting the behaviour of page
style commands.

fancyhdr.sty: macros/latex/contrib/supported/
fancyhdr

nopageno.sty: macros/latex/contrib/supported/
carlisle/nopageno.sty

123 How to create crop marks

If you’re printing something that’s eventually to be re-
produced in significant quantities, and bound, it’s con-
ventional to print on paper larger than your target prod-
uct, and to place “crop marks” outside the printed area.
These crop marks are available to the production house,
for lining up reproduction and trimming machines.

You can save yourself the (considerable) trouble of
programming these marks for yourself by using the pack-
age crop, which has facilities to satisfy any conceivable
production house.

43

crop.sty: macros/latex/contrib/supported/crop

124

It’s often useful to place some text (such as ‘DRAFT’)
in the background of every page of a document. For
ETEX users, this can be achieved with the draftcopy pack-
age. This can deal with many types of DVI processors (in
the same way that the graphics package does) and knows
translations for the word ‘DRAFT’ into a wide range of
languages (though you can choose your own word, t00).

‘Watermarks’ on every page

More elaborate watermarks may be achieved using the
eso-pic package, which in turn uses the package everyshi,
both part of Martin Schréder’s ms bundle.

draftcopy.sty: macros/latex/contrib/supported/
draftcopy

eso-pic.sty and everyshi.sty: Distributed in
macros/latex/contrib/supported/ms

125 Typesetting things in landscape orientation

It’s often necessary to typeset part of a document in land-
scape orientation; to achieve this, one needs not only to
change the page dimensions, but also to instruct the out-
put device to print the strange page differently.

There are two “ordinary” mechanisms for doing two
slight variations of landscape typesetting:

e If you have a single floating object that is wider than
it is deep, and will only fit on the page in landscape
orientation, use the rotating package; this defines
sidewaysfigure and sidewaystable environments
which create floats that occupy a whole page.

e If you have a long sequence of things that need to
be typeset in landscape (perhaps a code listing, a
wide tabbing environment, or a huge table type-
set using longtable or supertabular), use the lscape
package. This defines an environment landscape,
which clears the current page and restarts typeset-
ting in landscape orientation (and clears the page
at the end of the environment before returning to
portrait orientation).

No currently available package makes direct provision for
typesetting in both portrait and landscape orientation on
the same page (it’s not the sort of thing that TEX is well
set-up to do). If such behaviour was an absolute necessity,
one would use the techniques described in question 156,
and would rotate the landscape portion using the rotation
facilities of the graphics package. (Returning from land-
scape to portrait orientation would be somewhat easier:
the portrait part of the page would be a bottom float at
the end of the landscape section, with its content rotated.)

A word of warning: most current TEX previewers do
not honour rotation requests in .dvi files (the exceptions
are the (commercial) Y&Y previewer dviwindo (see ques-
tion 55), and the fpTEX previewer WinDVI). If your pre-
viewer is not capable of rotation, your best bet is to con-
vert your output to PostScript or to PDF, and to view
these ‘final’ forms with an appropriate viewer.

graphics.sty: Distributed as part of
macros/latex/required/graphics

longtable. sty: Distributed as part of
macros/latex/required/tools

lscape.sty: Distributed as part of
macros/latex/required/graphics

rotating.sty: macros/latex/contrib/supported/
rotating

supertabular.sty: macros/latex/contrib/
supported/supertabular

126 Putting things at fixed positions on the
page
TEX’s model of the world is (broadly speaking) that the
author writes text, and TEX and its macros decide how
it all fits on the page. This is not good news for the au-
thor who has, from whatever source, a requirement that
certain things go in exactly the right place on the page.
Fortunately, in the IATEX world at least, there is a
fixed point on every page, to whit the page header. The
package textpos latches bits of typesetting to locations you
specify, by fixing them to the page header, and thereby
solves the problem.

tertpos.sty: macros/latex/contrib/supported/
textpos

P.4 Spacing of characters and lines
127 Double-spaced documents in BTEX

Are you producing a thesis, and trying to obey regula-
tions that were drafted in the typewriter era? Or are
you producing copy for a journal that insists on double
spacing for the submitted articles?

ITEX is a typesetting system, so the appropriate de-
sign conventions are for “real books”. If your requirement
is from thesis regulations, find whoever is responsible for
the regulations, and try to get the wording changed to
cater for typeset theses (e.g., to say “if using a typeset-
ting system, aim to make your thesis look like a well-
designed book”). (If your requirement is from a journal,
you’re probably even less likely to be able to get the rules
changed, of course.)

If you fail to convince
want some inter-line space copy-editing,
try changing \baselinestretch: \renewcommand
{\baselinestretch}{1.2} may be enough to give of-
ficials the impression you’ve kept to their regulations;
\baselinestretch changes don’t take effect until you se-
lect a new font, so make the change in the preamble before
any font is selected. Don’t try changing \baselineskip:
its value is reset at any size-changing command.

Alternatively, use a line-spacing package; the only one
currently supported is setspace (do mot be tempted by
doublespace: its performance under current IXTEX is at
best problematical). setspace has the advantage that it
switches off double-spacing at places where you would
want it to (footnotes, figure captions, and so on); it’s
very troublesome to achieve this if you’re manipulating
\baselinestretch yourself.

your officials, or

for

setspace.sty: macros/latex/contrib/supported/
setspace/setspace.sty

44

128 Changing the space between letters

A common technique in advertising copy (and other text
whose actual content need not actually be read) is to al-
ter the space between the letters (otherwise known as the
tracking). As a general rule, this is a very bad idea: it de-
tracts from legibility, which is contrary to the principles
of typesetting (any respectable font you might be using
should already have optimum tracking built into it).

The great type designer, Eric Gill, is credited with
saying “he who would letterspace lower-case text, would
steal sheep”. (The attribution is probably apocryphal:
others are also credited with the remark. Stealing sheep
was, in the 19th century, a capital offence in Britain.) As
the remark suggests, though, letterspacing of upper-case
text is less awful a crime; the technique used also to be
used for emphasis of text set in Fraktur (or similar) fonts.

Straightforward macros (usable, in principle, with any
TEX macro package) may be found in letterspacing (which
is the name of the .tex file; it also appears as the
letterspace package in some distributions).

The tracking package has similar facilities.

A more comprehensive solution is to be found in the
soul package (which is optimised for use with IANTEX, but
also works with Plain TEX). Soul also permits hyphen-
ation of letterspaced text; Gill’s view of such an activity
is not (even apocryphally) recorded. (Spacing-out forms
part of the name of soul; the other half is described in
question 205.)

letterspacing. tex: macros/generic/
letterspacing.tex

soul.sty: macros/latex/contrib/supported/soul

tracking.sty: macros/latex/contrib/supported/
tracking/tracking.sty

129 Setting text ragged right

The trick with typesetting ragged right is to be sure
you’ve told the TEX engine “make this paragraph ragged,
but never too ragged”. The KTEX \raggedright com-
mand (and the corresponding flushleft environment)
has a tendency to miss the “never” part, and will often
create ridiculously short lines, for some minor benefit later
in the paragraph. The Plain TEX version of the command
doesn’t suffer this failing, but is rather conservative: it is
loath to create too large a gap at the end of the line,
but in some circumstances (such as where hyphenation
is suppressed see question 175) painfully large gaps may
sometimes be required.

Martin Schroder’s ragged2e package offers the best of
both worlds: it provides raggedness which is built on the
Plain TEX model, but which is easily configurable. It de-
fines easily-remembered command (e.g., \RaggedRight)
and environment (e.g., FlushLeft) names that are simply
capitalised transformations of the XIEX kernel originals.
The documentation discusses the issues and explains the
signficance of the various parameters of ragged2e’s oper-
ation.

ragged2e.sty: Distributed as part of
macros/latex/contrib/supported/ms

130 Cancelling \ragged commands

KTEX provides commands \raggedright
\raggedleft, but none to cancel their effect.

and

The following code (to be inserted in a package of your
own, or as internal IATEX code —see question 191) defines
a command that restores flush justification at both mar-
gins:

\def\flushboth{’
\let\\\@normalcr
\@rightskip\z@skip \rightskip\@rightskip
\leftskip\z@skip
\parindent 1.5em\relax}

There’s a problem with the setting of \parindent in the
code: it’s necessary because both the \ragged commands
set \parindent to zero, but the setting isn’t a constant
of nature: documents using a standard I#TEX class with
twocolumn option will have 1.0em by default, and there’s
no knowing what you (or some other class) will have done.

P.5 Typesetting specialities
131 Including a file in verbatim in BTEX

A good way is to use Rainer Schopf’s verbatim, which
provides a command \verbatiminput that takes a file
name as argument.

Another way is to use the alltt environment, which
requires alltt. alltt interprets its contents ‘mostly’ ver-
batim, but executes any TEX commands it finds: so one
can say:

\begin{alltt}
\input{verb.txt}
\end{alltt}

of course, this is little use for inputting (I4)TEX source
code. ..

Moreverb extends the facilities of wverbatim package,
providing a listing environment and a \listinginput
command, which line-number the text of the file. The
package also has a \verbatimtabinput command, that
honours TAB characters in the input (the listing envi-
ronment and command also both honour TAB).

The fancyvrb package offers configurable implemen-
tations of everything wverbatim and moreverb have, and
more besides. It is nowadays the package of choice for
the discerning typesetter of verbatim text, but its wealth
of facilities makes it a complex beast and study of the
documentation is strongly advised.

alltt.sty: Part of the BTEX distribution.

fancyvrb.sty: macros/latex/contrib/supported/
fancyvrb

moreverd.sty: macros/latex/contrib/supported/
moreverb

verbatim. sty: Distributed as part of
macros/latex/required/tools
132 Including line numbers in typeset output

For general numbering of lines, there are two packages for
use with ITEX, lineno (which permits labels attached to
individual lines of typeset output) and numline.

45

Both of these packages play fast and loose with the
ETEX output routine, which can cause problems: the user
should beware. ..

If the requirement is for numbering verbatim text,
moreverb or fancyvrb (see question 131) may be used.

One common use of line numbers is in critical editions
of texts, and for this the edmac package (macros/plain/
contrib/edmac) offers comprehensive support.

fancyvurb.sty: macros/latex/contrib/supported/
fancyvrb

lineno.sty: macros/latex/contrib/supported/
lineno

moreverd.sty: macros/latex/contrib/supported/
moreverb

numline.sty: macros/latex/contrib/supported/
numline/numline.sty

133 Generating an index in (B)TEX

Making an index is not trivial; what to index, and how
to index it, is difficult to decide, and uniform implemen-
tation is difficult to achieve. You will need to mark all
items to be indexed in your text (typically with \index
commands).

It is not practical to sort a large index within TEX,
S0 a post-processing program is used to sort the output
of one TEX run, to be included into the document at the
next run.

The following programs are available:

makeindex Comes with most distributions — a good
workhorse, but is not well-arranged to deal with
other sort orders than the canonical ASCII order-
ing.
The makeindex documentation is a good source
of information on how to create your own index.
Makeindex can be used with some TEX macro pack-
ages other than KTEX, such as Eplain (see ques-
tion 14), and TEXsis (whose macros can be used
independently with Plain TEX).

idxtex for IMTEX under VMS, which comes with a
glossary-maker called glotez.

texindex A witty little shell/sed-script-based utility for
ETEX under Unix.
There are other programs called terindex, notably
one that comes with the Texinfo distribution (see
question 16).

xindy arose from frustration at the difficulty of making a
multi-language version of makeindez. It is designed
to be a successor to makeindex, by a team that in-
cluded the then-current maintainer of makeindex.
It successfully addresses many of makeindez’s short-
comings, including difficulties with collation order
in different languages, and it is highly flexible.
Sadly, its take-up is proving rather slow.

idzter: indexing/glo+idxtex
makeindex: indexing/makeindex

makeindex (Macintosh):
systems/mac/macmakeindex2.12.sea.hqgx

tezindex: support/texindex

texsis (system): macros/texsis

texsis (makeindex support):
macros/texsis/index/index.tex

zindy: support/xindy

134 Typesetting URLs

URLs tend to be very long, and contain characters that
would naturally prevent them being hyphenated even if
they weren’t typically set in \ttfamily, verbatim. There-
fore, without special treatment, they often produce wildly
overfull \hboxes, and their typeset representation is aw-
ful.

There are three packages that help solve this problem:

e The Path package, which defines a \path command.
The command defines each potential break charac-
ter as a \discretionary, and offers the user the
opportunity of specifying a personal list of potential
break characters. Its chief disadvantage is fragility
in BTEX moving arguments. (The Eplain macros —
see question 14 — define a similar \path command.)

e The url package, which defines an \url command
(among others, including its own \path command).
The command gives each potential break charac-
ter a maths-mode ‘personality’, and then sets the
URL itself (in the user’s choice of font) in maths
mode. It can produce (IWTEX-style) ‘robust’ com-
mands (see question 192) for use within moving ar-
guments. Note that, because the operation is con-
ducted in maths mode, spaces within the URL ar-
gument are ignored unless special steps are taken.
It is possible to use the url package in Plain TEX,
with the assistance of the miniltz package (which
was originally developed for using the I TEX graph-
ics package in Plain TgX). A small patch is also
necessary: the required sequence is therefore:
\input miniltx
\expandafter\def\expandafter\+

\expandafter{\+}
\input url.sty

e The hyperref package, which uses the typesetting
code of wurl, in a context where the typeset text
forms the anchor of a link.

The author of this answer prefers the (rather newer)
url package (directly or indirectly); both path and wurl
work well with Plain TEX (though of course, the fancy
BTEX facilities of wrl don’t have much place there).
(hyperref isn’t available in a version for use with Plain
TeX.)
hyperref.sty: macros/latex/contrib/supported/

hyperref

miniltz. tex: Distributed as part of
macros/plain/graphics

path.sty: macros/latex/contrib/other/misc/path.
sty

url.sty: macros/latex/contrib/other/misc/url.
sty

46

135 Typesetting music in TEX

In the early days, a simple music package called mutez
was written by Angelika Schofer and Andrea Steinbach,
which demonstrated that music typesetting was possible;
the package was very limited, and is no longer available.
Daniel Taupin took up the baton, and developed Mu-
sicTEX, which allows the typesetting of polyphonic and
other multiple-stave music; MusicTEX remains available,
but is most definitely no longer recommended.

MusicTEX has been superseded by its successor
MusiXTgX, which is a three-pass system (with a proces-
sor program that computes values for the element spacing
in the music), and achieves finer control than is possible
in the unmodified TEX-based mechanism that MusicTEX
uses. Daniel Taupin’s is the only version of MusiXTEX
currently being developed (the original author, Andreas
Egler, had an alternative version, but he is now working
on a different package altogether).

Input to MusixTEX is extremely tricky stuff, and Don
Simons’ preprocessor pmz is the preferred method of cre-
ating input for Taupin’s version. Pmx greatly eases use
of MusixTEX, but it doesn’t support the full range of
MusixTEX’s facilities directly; however, it does allow in-
line MusixTEX code in pmz sources.

Dirk Laurie’s M- Tz allows preparation of music with
lyrics; it operates “on top of” pmzx

Another simple notation is supported by abc2mtex;
this is a package designed to notate tunes stored in an
ASCII format (abc notation). It was designed primarily
for folk and traditional tunes of Western European ori-
gin (such as Irish, English and Scottish) which can be
written on one stave in standard classical notation, and
creates input intended for MusicTEX. However, it should
be extendable to many other types of music.

Digital music fans can typeset notation for their ef-
forts by using midi2tex, which translates MIDI data files
into MusicTEX source code.

There is a mailing list (TeX-music@sunsite.dk) for
discussion of typesetting music in TEX. To subscribe, use
http://sunsite.dk/mailman/listinfo/tex-music/

abc2mtexr: support/abc2mtex
M-Tz: support/mtx

midi2tez: support/midi2tex
musictexr: macros/musictex

musiztex (Taupin’s version):
macros/musixtex/taupin

musizter (Egler’s version):
macros/musixtex/egler

pmz: support/pmx

136 Other “document font” sizes?

The BTEX standard classes have a concept of a (base)
“document font” size; this size is the basis on which other
font sizes (those from \tiny to \Huge) are determined.
The classes are designed on the assumption that they
won’t be used with sizes other than the set that IWTEX
offers by default (10-12pt), but people regularly find they

need other sizes. The proper response to such a require-
ment is to produce a new design for the document, but
many people don’t fancy doing that.

Pragmatists, therefore, will tend to go for the classes
in the extsizes bundle. This bundle offers “extended” ver-
sions of the article, report, book and letter classes, at sizes
of 8,9, 14, 17 and 20pt as well as the standard 10-12pt.
Since little has been done to these classes other than to
adjust font sizes and things directly related to them, they
won’t be optimal — but they’re certainly practical.

extsizes bundle: macros/latex/contrib/other/
extsizes

137 Zero paragraph indent

The conventional way of typesetting running text has no
separation between paragraphs, and the first line of each
paragraph in a block of text indented.

In contrast, one common convention for typewritten
text was to have no indentation of paragraphs; such a
style is often required for “brutalist” publications such as
technical manuals, and in styles that hanker after type-
written manuscripts, such as officially-specified disserta-
tion formats.

Anyone can see, after no more than a moment’s
thought, that if the paragraph indent is zero, the para-
graphs must be separated by blank space: otherwise it is
sometimes going to be impossible to see the breaks be-
tween paragraphs.

The simple-minded approach to zero paragraph inden-
tation is thus:

\setlength{\parindent}{Opt}
\setlength{\parskip}{\baselineskip}

and in the very simplest text, it’s a fine solution.

However, the non-zero \parskip interferes with lists
and the like, and the result looks pretty awful. The
parskip package patches things up to look reasonable; it’s
not perfect, but it deals with most problems.

The Netherlands Users’ Group’s set of classes includes
an article equivalent (artikel3) and a report equivalent
(rapport8) whose design incorporates zero paragraph in-
dent and non-zero paragraph skip.

NTG classes: macros/latex/contrib/supported/
ntgclass

parskip.sty: macros/latex/contrib/other/misc/
parskip.sty

138 Set specifications and Dirac brackets

One of the few glaring omissions from TEX’s math-
ematical typesetting capabilities is a means of set-
ting separators in the middle of mathematical ex-
pressions. TgEX provides primitives called \left and
\right, which can be used to modify brackets (of what-
ever sort) around a mathematical expression, as in:
\left (<expression> \right) — the size of the paren-
theses is matched to the vertical extent of the expression.

However, in all sorts of mathematical enterprises one
may find oneself needing a \middle command, to be used
in expressions like

\left\{ x\in N \middle| x\mbox{ even} \right\}

47

to specify the set of even natural numbers. The e-TEX
system (see question 237) defines just such a command,
but users of Knuth’s original need some support. Don-
ald Arseneau’s braket package provides commands for set
specifications (as above) and for Dirac brackets (and bras
and kets). The package uses the e-TEX built-in command
if it finds itself running under e-TEX.

braket.sty: macros/latex/contrib/other/misc/
braket.sty

139 Big letters at the start of a paragraph

A common style of typesetting, now seldom seen except
in newspapers, is to start a paragraph (in books, usually
the first of a chapter) with its first letter set large enough
to span several lines.

This style is known as “dropped capitals”, or (in
French) “lettrines”, and TEX’s primitive facilities for
hanging indentation make its (simple) implementation
pretty straightforward.

The dropping package does the job simply, but has a
curious attitude to the calculation of the size of the font
to be used for the big letters. Examples appear in the
package documentation, so before you process the .dtx,
the package itself must already be installed.

The lettrine package has a well-constructed array of
options, and the examples (a pretty impressive set) come
as a separate file (also distributed in PostScript, so that
they can be viewed without installing the package itself).

dropping: macros/latex/contrib/other/dropping

lettrine: macros/latex/contrib/supported/
lettrine

140 Code listings in I*TEX

‘Pretty’ code listings are sometimes considered worth-
while by the neurotically sesthetic programmer, but they
have a serious place in the typesetting of dissertations by
computer science and other students who are expected to
write programs. Simple verbatim listings are commonly
useful, as well.

Verbatim listings are dealt with elsewhere (see ques-
tion 131). ‘Pretty’ listings are generally provided by
means of a pre-compiler, but the listings package man-
ages to do the job within KTEX.

The lgrind system is a well-established pre-compiler,
with all the facilities one might need and a wide repertoire
of languages.

The tiny_c2l system is more recent: users are encour-
aged to generate their own driver files for languages it
doesn’t already deal with.

The C++2LaTeX system comes with strong recom-
mendations for use with C and C++.

C++2LaTeX: support/C++2LaTeX-1_1pl1
lgrind: support/lgrind

listings.sty: macros/latex/contrib/supported/
listings

tiny_c2l: support/tiny_c21

141 The comma as a decimal separator

If you use a comma in maths mode, you get a small space
after it; this space is inappropriete if the comma is be-
ing used as a decimal separator. An easy solution to this
problem is to type (in math mode) 3{,}14 instead of typ-
ing 3,14. However, if your language’s typographic rules
require the comma as a decimal separator, such usage
can rapidly become extremely tiresome. In such cases
it is probably better to use the icomma package. The
packages ensures that there will be no extra space after a
comma, unless you type a space after it (as in £(x, y),
for instance), in which case the usual small space after
the comma appears.

icomma. sty: Distributed as part of
macros/latex/contrib/supported/was

142 Breaking boxes of text

(IM)TEX boxes may not be broken, in ordinary usage: once
you've typeset something into a box, it will stay there, and
the box will jut out beyond the side or the bottom of the
page if it doesn’t fit in the typeset area.

If you want a substantial portion of your text to be
framed (or coloured), the restriction starts to seem a real
imposition. Fortunately, there are ways around the prob-
lem.

The framed package provides framed and shaded en-
vironments; both put their content into something which
looks like a framed (or coloured) box, but which breaks
as necessary at page end. The environments “lose” foot-
notes, marginpars and head-line entries, and will not work
with multicol or other column-balancing macros.

The boites package provides a breakbox environment;
examples of its use may be found in the distribution, and
the package’s README file contains terse documentation.
The environments may be nested, and may appear inside
multicols environments; however, floats, footnotes and
marginpars will be lost.

For Plain TEX users, the facilities of the backgrnd
package may be useful; this package subverts the out-
put routine to provide vertical bars to mark text, and the
macros are clearly marked to show where coloured back-
grounds may be introduced (this requires shade, which is
distributed as tex macros and device-independent META-
FONT for the shading). The author of backgrnd claims
that the package works with I#TEX 2.09, but there are
reasons to suspect that it may be unstable working with
current EXTEX.

backgrnd. tex: macros/generic/backgrnd.tex
boites.sty: macros/latex/contrib/other/boites

framed. sty: macros/latex/contrib/other/misc/
framed.sty

shade. tez: macros/generic/shade.sty

P.6 Tables of contents and indexes
143 The format of the Table of Contents, etc.

The formats of entries in the table of contents (TOC)
are controlled by a number of internal commands (dis-
cussed in section 2.4 of The EMTEX Companion — see
question 22). The commands \@pnumwidth, \@tocrmarg

48

and \@dotsep control the space for page numbers, the
indentation of the right-hand margin, and the seperation
of the dots in the dotted leaders, respectively. The series
of commands named \10xxx, where xxx is the name of a
sectional heading (such as chapter or section, ...) con-
trol the layout of the corresponding heading, including the
space for section numbers. All these internal commands
may be individually redefined to give the effect that you
want.

Alternatively, the package tocloft provides a set of
user-level commands that may be used to change the TOC
formatting. Since exactly the same mechanisms are used
for the List of Figures and List of Tables, the layout of
these sections may be controlled in the same way.

tocloft.sty: macros/latex/contrib/supported/
tocloft

144 Unnumbered sections in the Table of
Contents

The easiest way to get headings of funny ‘sections’ such
as prefaces in the table of contents is to use the counter
secnumdepth described in Appendix C of the IXTEX man-
ual. For example:

\setcounter{secnumdepth}{-1}
\chapter{Preface}

Of course, you have to set secnumdepth back to its usual
value (which is 2 in the standard styles) before you do
any ‘section’ which you want to be numbered.

Similar settings are made automatically in the I TEX
book class by the \frontmatter and \backmatter com-
mands.

This is why it works: \chapter without the star does

1. put something in the .toc file;

2. if secnumdepth > 0, increase the counter for the
chapter and write it out.

3. write the chapter title.

Other sectioning commands are similar, but with other
values used in the test.

The value of the counter tocdepth controls which
headings will be finally printed in the table of contents.
This normally has to be set in the preamble and is a con-
stant for the document. The package tocvsec2 package
provides a convenient interface to allow you to change the
secnumdepth and/or the tocdepth counter values at any
point in the body of the document; this provides conve-
nient independent controls over the sectional numbering
and the table of contents.

The package abstract (see question 118) includes an
option to add the abstract to the table of contents, while
the package tocbibind has options to include the table of
contents itself, the bibliography, index, etc., to the ta-
ble of contents.

abstract.sty: macros/latex/contrib/supported/
abstract

tocbibind. sty: macros/latex/contrib/supported/
tocbibind

tocusec2.sty: macros/latex/contrib/supported/
tocvsec2

145 Bibliography, index, etc., in TOC
For “how to do” (I suppose)

The standard KTEX classes (and many others) use
\section* or \chapterx* for auto-generated parts of the
document (the tables of contents, figures and tables, the
bibliography and the index). As a result, these ite,s aren’t
numbered (which most people don’t mind), and (more im-
portantly) they don’t appear in the table of contents.

The correct solution (as always) is to have a class
of your own that formats your document according
to your requirements. The macro to do the job
(\addcontentsline) is fairly simple, but there is always
an issue of ensuring that the contents entry quotes the
correct page:

\bibliography{frooble}
\addcontentsline{toc}{chapter}{Bibliography}

will produce the wrong answer if the bibliography is more
than one page long. Instead, one should say:

\cleardoublepage
\addcontentsline{toc}{chapter}{Bibliography}
\bibliography{frooble}
(Note that \cleardoublepage does the right thing, even
if your document is single-sided — in that case, it’s a syn-
onym for \clearpage). Ensuring that the entry refers to
the right place is trickier still in a \section-based class.
The common solution, therefore, is to use the
tocbibind package, which provides many facilities to con-
trol the way these entries appear in the table of contents.
Of course, the KOMA-Script bundle of classes (scrbook
instead of book, scrreprt instead of report, etc.) provide
this functionality as a set of class options.

KOMA-Script bundle: macros/latex/contrib/
supported/koma-script

tocbibind. sty: macros/latex/contrib/supported/
tocbibind

146 Multiple indexes

KTEX’s standard indexing capabilities (those provided by
the makeidz package) only provide for one index in your
document; even quite modest documents can be improved
by indexes for separate topics.

The multind package provides simple and straight-
forward multiple indexing. You tag each \makeindex,
\index and \printindex command with a file name,
and indexing commands are written to (or read from)
the name with the appropriate (.idx or .ind) extension
appended. The \printindex command is modified from
the ITEX standard so that it doesn’t create its own chap-
ter or section heading; you therefore decide what names
(or sectioning level, even) to use for the indexes, and
\indexname (see question 187) is completely ignored.

The index package provides a comprehensive set of
indexing facilities, including a \newindex command that
allows the definition of new styles of index. \newindex
takes a ‘tag’ (for use in indexing commands), replace-
ments for the .idx and .ind file extensions, and a title
for the index when it’s finally printed; it can also change
the item that’s being indexed against (for example, one

49

might have an index of artists referenced by the figure
number where their work is shown).

indez. sty: Distributed as part of
macros/latex/contrib/supported/camel

multind.sty: macros/latex209/contrib/misc/
multind.sty

Q How doIdo X in (B)TEX
Q.1

147 Proof environment

Mathematics

It has long been thought impossible to make a proof en-
vironment which automatically includes an ‘end-of-proof’
symbol. Some proofs end in displayed maths; others do
not. If the input file contains ...\] \end{proof} then
ITEX finishes off the displayed maths and gets ready for
a new line before it reads any instructions connected with
ending the proof, so the code is very tricky. You can in-
sert the symbol by hand, but the ntheorem package now
solves the problem for BTEX users: it does indeed provide
an automatic way of signalling the end of a proof.

ntheorem: macros/latex/contrib/supported/
ntheorem

148

If you want to take advantage of the powerful
\newtheorem command without the constraint that the
contents of the theorem is in a sloped font (for example,
to use it to create remarks, examples, proofs, ...) then
you can use the theorem package. Alternatively, the fol-
lowing sets up an environment remark whose content is
in roman.

Roman theorems

\newtheorem{preremark}{Remark}
\newenvironment{remark}y,
{\begin{preremark}\upshape}{\end{preremark}}

The ntheorem package provides roman theorems directly.

ntheorem.sty: macros/latex/contrib/supported/
ntheorem

theorem.sty: Distributed as part of
macros/latex/required/tools

149 Defining a new log-like function in I TEX
Use the \mathop command, as in:

\newcommand{\diag}{\mathop{\mathrm{diag}}}

Subscripts and superscripts on \diag will be placed
as they are on \lim. If you want your subscripts and
superscripts always placed to the right, do:

\newcommand{\diag}{\mathop{\mathrm{diag}}\nolimits}
AMS-ITEX provides a command \DeclareMathOperator

(in its amsopn package) that satisfies the requirement.

(It should be noted that “log-like” was reportedly a
joke on Lamport’s part; it is of course clear what was
meant.)

amsopn.sty: In the ApS-ETREX distribution
macros/latex/required/amslatex

Q.2 Lists

150 Fancy enumeration lists

Suppose you want your top-level enumerates to be la-
belled ‘I/°, ‘II/’, ..., then give these commands:

\renewcommand{\theenumi}{\Roman{enumi}}
\renewcommand{\labelenumi}{\theenumi/}

The possible styles of numbering are given in Section 6.3
of Lamport’s book (see question 22). Both \theenumi
and \labelenumi must be changed, since \theenumi is
used in cross-references to the list.

For lower level enumerates, replace enumi by enumii,
enumiii or enumiv, according to the level. If your label
is much larger than the default, you should also change
\leftmargini, \leftmarginii, etc.

If you're running KTEX 2¢, the enumerate.sty pack-
age offers similar facilities. Using it, the example above
would be achieved simply by starting the enumeration
\begin{enumerate}[I/].

enumerate.sty: Distributed as part of
macros/latex/required/tools

151 How to reduce list spacing

Lamport’s book (see question 22) lists various parameters
for the layout of list (things like \topsep, \itemsep and
\parsep), but fails to mention that they’re set automat-
ically within the list itself. It works by each list executes
a command \@list({depth) (the depth appearing as a
lower-case roman numeral); what’s more, \@listi is usu-
ally reset when the font size is changed. As a result, it’s
rather tricky for the user to control list spacing; of course,
the real answer is to use a document class designed with
more modest list spacing, but we all know such things are
hard to come by.

There are packages that provide some control of list
spacing, but they seldom address the separation from
surrounding text (defined by \topsep). The expdlist
package, among its many controls of the appearance
of description lists, offers a compaction parameter
(see the documentation); the mdwlist package offers a
\makecompactlist command for users’ own list defi-
nitions, and uses it to define compact lists itemizex,
enumerate* and descriptionx. In fact, you can write
lists such as these commands define pretty straightfor-
wardly — for example:

\newenvironment{itemize*1}J,
{\begin{itemize}}
\setlength{\itemsep}{Optl}/
\setlength{\parsep}{Opt}1}/%
{\end{itemize}}
However, both packages offer other facilities for list config-
uration: you should certainly not try the “do-it-yourself”
approach if you need a package for some other list config-
uration purpose.

If you want to adjust \topsep, the most sensible ap-
proach (at present) is to define your list ‘from first prin-
ciples’ using the \1ist command; its invocation is \1ist
{(item stuff)}{(list stuff)}; the (list stuff) is
executed after the \@list(depth), and can therefore be
used to adjust all the parameters, including \topsep.

50

An alternative is to redefine \@list(depth) (and the
size-changing commands that alter \@listi), but this is
not recommended unless you're building your own class
or package, in which case one hopes you're capable of
analysing the way in which the standard classes do things
(as recommended in question 28).

ezpdlist.sty: macros/latex/contrib/supported/
expdlist

mdwlist.sty: Distributed as part of
macros/latex/contrib/supported/mdwtools

Q.3 Tables, figures and diagrams
152 Fixed-width tables

There are two basic techniques for making fixed-width
tables in IATEX: you can make the gaps between the
columns stretch, or you can stretch particular cells in the
table.

Basic I'TEX can make the gaps stretch: the tabular*
environment takes an extra argument (before the clpr
layout one) which takes a length specification: you can
say things like “16cm” or “\columnwidth” here. You must
also have an \extracolsep command in the clpr layout
argument, inside an @{} directive. So, for example, one
might have
\begin{tabular*}{\columnwidthl}y,

{@{\extracolsep{\fill}}111r}
The \extracolsep applies to all inter-column gaps to its
right as well; if you don’t want all gaps stretched, add
\extracolsep{Opt} to cancel the original.

The tabularx package defines an extra clpr directive,
X; X columns behave as p columns which expand to fill
the space available. If there’s more than one X column in
a table, the spare space is distributed between them.

The ltztable combines the features of the longtable and
tabularz packages: it’s important to read the documenta-
tion, since usage is distinctly odd.

ltxtable.sty: Distributed as part of
macros/latex/contrib/supported/carlisle

tabularz. sty: Distributed as part of
macros/latex/required/tools

153 Spacing lines in tables

For “how to do”
(or a new one on tables?)

(M) TEX mechanisms for maintaining the space between
lines (the “leading”) rely on TEX’s paragraph builder,
which compares the shape of consecutive lines and ad-
justs the space between them.

These mechanisms can’t work in exactly the same way
when (I#)TEX is building a table, because the paragraph
builder doesn’t get to see the lines themselves. As a re-
sult, tables sometimes typeset with lines uncomfortably
close together (or occasionally ridiculously far apart).

Traditional (moving metal type) typographers would
adjust the spacing between lines of a table by use of a
“strut” (a metal spacer). A TEX user can do exactly the
same thing: most macro packages define a \strut com-
mand, that defines a space appropriate to the current size
of the text; placing a \strut command at the end of a

troublesome row is the simplest solution to the problem —
if it works. Other solutions below are IXTEX-specific, but
some may be simply translated to Plain TEX commands.

If your table exhibits a systematic problem (i.e., every
row is wrong by the same amount) use \extrarowheight,
which is defined by the array package:

\usepackage{arrayl}’ in the preamble

\setlength{\extrarowheight}{length}
\begin{tabular}{....}

To correct a single row whose maladjustment isn’t cor-
rected by a \strut command, you can define your own,
using \rule{Opt}{length} — which is a near approxi-
mation to the command that goes inside a \strut.

General solutions are available, however. The tabls
package automatically generates an appropriately-sized
strut at the end of each row. Its disadvantages are that
it’s really rather slow in operation (since it gets in the way
of everything within tables) and its (lack of) compatibility
with other packages.

The booktabs package comes with a thought-provoking
essay about how tables should be designed. Since table
row-spacing problems most often appear in collisions with
rules, the author’s thesis, that XTEX users tend too often
to rule their tables, is interesting. The package provides
rule commands to support the author’s scheme, but deals
with inter-row spacing too. Again, booktabs is not com-
patible with some other packages.

array.sty: Distributed as part of
macros/latex/required/tools

booktabs.sty: macros/latex/contrib/supported/
booktabs

tabls.sty: macros/latex/contrib/other/misc/
tabls.sty

154 Tables longer than a single page

For “how to do”
or a new section on tables

Tables are, by default, set entirely in boxes of their own:
as a result, they won’t split over a page boundary. Sadly,
the world keeps turning up tables longer than a single
page that we need to typeset.

For simple tables (whose shape is highly regular), the
simplest solution may well be to use the tabbing environ-
ment, which is tedious to set up, but which doesn’t force
the whole aligment onto a single page.

The longtable package builds the whole table (in
chunks), in a first pass, and then uses information it has
written to the .aux file during later passes to get the
setting “right” (the package ordinarily manages to set ta-
bles in just two passes). Since the package has overview
of the whole table at the time it’s doing “final” setting,
the table is set “uniformly” over its entire length, with
columns matching on consecutive pages. longtable has a
reputation for failing to interwork with other packages,
but it does work with colortbl, and its author has pro-
vided the ltztable package to provide (most of) the facili-
ties of tabularz (see question 152) for long tables: beware
of its rather curious usage constraints — each long table
should be in a file of its own, and included by \LTXtable

51

{width}{file}. Since longtable’s multiple-page tables
can’t possibly live inside floats, the package provides for
captions within the longtable environment itself.

The supertabular package starts and stops a tabular
environment for each page of the table. As a result, each
‘page worth’ of the table is compiled independently, and
the widths of corresponding columns may differ on succes-
sive pages. However, if the correspondence doesn’t mat-
ter, or if your columns are fixed-width, supertabular has
the great advantage of doing its job in a single run.

Both longtable and supertabular allow definition of
head- and footlines for the table; longtable allows distinc-
tion of the first and last head and foot.

The atab package fixes some infelicities of
supertabular, and also provides a “last head” facility
(though this, of course, destroys supertabular’s advan-
tage of operating in a single run).

longtable. sty: Distributed as part of
macros/latex/required/tools

ltztable.sty: Generate by running macros/latex/
contrib/supported/carlisle/ltxtable.tex

supertabular.sty: macros/latex/contrib/
supported/supertabular

ztab.sty: macros/latex/contrib/supported/xtab

155 How to alter the alignment of tabular cells

One often needs to alter the alignment of a tabular p
(‘paragraph’) cell, but problems at the end of a table row
are common. If we have a p cell that looks like

. & \centering blah ... \\

one is liable to encounter errors that complain about
a “misplaced \noalign” (or the like). The problem is
that the command \\ means different things in differ-
ent circumstances: the tabular environment switches the
meaning to a value for use in the table, and \centering,
\flushright and \flushleft all change the meaning
to something incompatible. Note that the problem only
arises in the last cell of a row: since each cell is set into a
box, its settings are lost at the & (or \\) that terminates
it.

The simple (old) solution is to preserve the meaning
of \\:
\def\PBS#1{\let\temp=\\7%

#1%

\let\\=\temp
}

which one uses as:
. & \PBS\centering blah ... \\

(for example).

The technique using \PBS was developed in the days
of KTEX 2.09 because the actual value of \\ that the
tabular environment used was only available as an inter-
nal command. Nowadays, the value is a public command,
and you can in principle use it explicitly:

. & \centering blah ...
but the old trick has the advantage of extreme compact-
ness.

The \PBS trick also serves well in array package “field
format” preamble specifications:

\tabularnewline

\begin{tabular}{... >{\PBS\centering}p{50mm}}

array.sty: Distributed as part of
macros/latex/required/tools

156 Flowing text around figures in BTEX

There are several IMTEX packages that purport to do this,
but they all have their limitations because the TEX ma-
chine isn’t really designed to solve this sort of problem.
Piet van Oostrum has conducted a survey of the available
packages; he recommends:

floatflt floatfit is an improved version (for IMTEX 2¢) of
floatfig.sty, and its syntax is:
\begin{floatingfigure} [options]{width of fig-
ure}

figure contents

\end{floatingfigure}
There is a (more or less similar) floatingtable en-
vironment.
The tables or figures can be set left or right, or al-
ternating on even/odd pages in a double-sided doc-
ument.
The package works with the multicol package, but
doesn’t work well in the neighbourhood of list en-
vironments (unless you change your BTEX docu-
ment).

wrapfig wrapfig has syntax:
\begin{wrapfigure} [height of figure in lines]

{1,r,etc} Loverhangl {width}
figure, caption, etc.

\end{wrapfigure}
The syntax of the wraptable environment is simi-
lar.
Height can be omitted, in which case it will be
calculated by the package; the package will use
the greater of the specified and the actual width.
The {1,r,etc.} parameter can also be specified as
i(nside) or o(utside) for two-sided documents, and
uppercase can be used to indicate that the picture
should float. The overhang allows the figure to be
moved into the margin. The figure or table will en-
tered into the list of figures or tables if you use the
\caption command.
The environments do not work within list environ-
ments that end before the figure or table has fin-
ished, but can be used in a parbox or minipage,
and in twocolumn format.

picins Picins is part of a large bundle that allows in-
clusion of pictures (e.g., with shadow boxes, various
MS-DOS formats, etc.). The command is:
\parpic (width , height) (x-off , y-off)

[Options] [Position]
{Picture}

Paragraph text
All parameters except the Picture are optional. The
picture can be positioned left or right, boxed with a
rectangle, oval, shadowbox, dashed box, and a cap-
tion can be given which will be included in the list
of figures.
Unfortunately (for those of us whose understanding

52

of German is not good), the documentation is in
German. Piet van Oostrum has written an English
summary.

floatflt.sty: macros/latex/contrib/other/
floatflt

picins.sty: systems/msdos/picins/picins.zip

picins documentation summary:
macros/latex209/contrib/picins/picins.txt

wrapfig.sty: macros/latex/contrib/other/misc/
wrapfig.sty

157 Drawing with TEX

There are many packages to do pictures in (IMTEX it-
self (rather than importing graphics created externally),
ranging from simple use of ITEX picture environment,
through enhancements like epic, to sophisticated (but
slow) drawing with P[CTEX. Depending on your type of
drawing, and setup, four systems should be at the top of
your list to look at:

1. pstricks; this gives you access to all the power of
PostScript from TEX itself, by sophisticated use of
\specials. You need a decent DVI to PostScript
driver (like dvips), but the results are worth it. The
well-documented package gives you not only low-
level drawing commands (and full colour) like lines,
circles, shapes at arbitrary coordinates, but also
high-level macros for framing text, drawing trees
and matrices, 3D effects, and more.

2. MetaPost; you liked METAFONT, but never got
to grips with font files? Try MetaPost (see ques-
tion 4) — all the power of METAFONT, but it gener-
ates PostScript figures; MetaPost is nowadays part
of most serious (I&)TEX distributions. Knuth uses
it for all his work. ..

3. Mfpic; you liked METAFONT, but can’t understand
the language? The package makes up METAFONT
or MetaPost code for you within using familiar-
looking TEX macros. Not quite the full power of
METAFONT, but a friendlier interface.

4. You liked P[CTEX but don’t have enough memory
or time? Look at Eitan Gurari’s dratex, which is
as powerful as most other TEX drawing packages,
but is an entirely new implementation, which is not
as hard on memory, is much more readable (and is
fully documented).

dratex: graphics/dratex
mfpic: graphics/mfpic
pstricks: graphics/pstricks
158
Michael Levine’s feynman bundle for drawing the dia-
grams in BTEX 2.09 is still available.

Thorsten Ohl’s feynmf is designed to work with cur-
rent WTREX, and works in combination with METAFONT
(or MetaPost). The feynmf or feynmp package reads a
description of the diagram written in TEX, and writes out
code. METAFONT (or MetaPost) can then produce a font
(or PostScript file) for use in a subsequent BTEX run. For

Drawing Feynman diagrams in BTEX

new users, who have access to MetaPost, the PostScript
version is probably the better route, for document porta-
bility and other reasons.

Jos Vermaseren’s azodraw is mentioned as an alter-
native in the documentation of feynmf, but it is written
entirely in terms of dvips \special commands, and is
thus rather imperfectly portable.

An alternative approach is implemented by Norman
Gray’s feyn package. Rather than creating complete di-
agrams as postscript images, feyn provides a font (in a
variety of sizes) containing fragments, which you can com-
pose to produce complete diagrams. It offers fairly simple
diagrams which look good in equations, rather than com-
plicated ones more suitable for display in figures.

azodraw: graphics/axodraw/export
feyn font bundle: fonts/feyn
feynman bundle: macros/latex209/contrib/feynman

feynmf/feynmp bundle:
macros/latex/contrib/supported/feynmf

159 Floats on their own on float pages

It’s sometimes necessary to force a float to live on a page
by itself. (It’s sometimes even necessary for every float
to live on a page by itself.) When the float fails to ‘set’,
and waits for the end of a chapter or of the document,
the natural thing to do is to declare the float as
\begin{figurel}[p!]

but the overriding ! modifier has no effect on float page
floats; so you have to make the float satisfy the param-
eters. Question 204 offers some suggestions, but doesn’t
solve the one-float-per-page question.

The ‘obvious’ solution, wusing the counter
totalnumber (“total number of floats per page”) doesn’t
work: totalnumber only applies to floats on ‘text’ pages
(pages containing text as well as one or more float).
So, to allow any size float to take a whole page, set
\floatpagefraction really small, and to ensure that no
more than one float occupies a page, make the separation
between floats really big:

\renewcommand\floatpagefraction{.001}
\makeatletter
\setlength\@fpsep{\textheight}
\makeatother

Q.4 Footnotes
160 Footnotes in tables

The standard BTEX \footnote command doesn’t work
in tables; the table traps the footnotes and they can’t
escape to the bottom of the page.

If your table is floating, your best bet is (unfortu-
nately) to put the table in a minipage environment and
to put the notes underneath the table, or to use Don-
ald Arseneau’s package threeparttable (which implements
“table notes” proper).

Otherwise, if your table is not floating (it’s just a
‘tabular’ in the middle of some text), there are several
things you can do to fix the problem.

53

1. Use \footnotemark to position the little marker ap-
propriately, and then put in \footnotetext com-
mands to fill in the text once you’ve closed the
tabular environment. This is described in Lam-
port’s book, but it gets messy if there’s more than
one footnote.

2. Stick the table in a minipage anyway. This provides
all the ugliness of footnotes in a minipage with no
extra effort.

3. Use threeparttable anyway; the package is intended
for floating tables, and the result might look odd if
the table is not floating, but it will be reasonable.

4. Use tabularz or longtable from the KTEX tools dis-
tribution; they’re noticeably less efficient than the
standard tabular environment, but they do allow
footnotes.

5. Grab hold of footnote, and put your tabular en-
vironment inside a savenotes environment. Alter-
natively, say \makesavenoteenv{tabular} in the
preamble of your document, and tables will all han-
dle footnotes correctly.

6. Use mdwtab from the same bundle; it will han-
dle footnotes properly, and has other facilities to
increase the beauty of your tables. It may also
cause other table-related packages (not the standard
‘tools’ ones, though) to become very unhappy and
stop working.

footnote.sty: Distributed as part of
macros/latex/contrib/supported/mdwtools

longtable. sty: Distributed as part of
macros/latex/required/tools

mdwtab.sty: Distributed as part of
macros/latex/contrib/supported/mdwtools

threeparttable.sty: macros/latex/contrib/other/
misc/threeparttable.sty

tabularz. sty: Distributed as part of
macros/latex/required/tools

161 Footnotes in BTEX section headings

The \footnote command is fragile, so that simply placing
the command in \section’s arguments isn’t satisfactory.
Using \protect\footnote isn’t a good idea either: the
arguments of a section command are used in the table of
contents and (more dangerously) potentially also in page
headings. Unfortunately, there’s no mechanism to sup-
press the footnote in the heading while allowing it in the
table of contents, though having footnotes in the table of
contents is probably unsatisfactory anyway.

To suppress the footnote in headings and table of con-
tents:

e Take advantage of the fact that the mandatory ar-
gument doesn’t ‘move’ if the optional argument is

present: \section[title]{title\footnote{title ftnt

e Use the footmisc package, with package option
stable — this modifies footnotes so that they softly
and silently vanish away if used in a moving argu-
ment.

footmisc.sty: macros/latex/contrib/supported/
footmisc

162 Footnotes in captions

Footnotes in captions are especially tricky: they present
problems of their own, on top of the problems one expe-
riences with footnotes in section titles (see question 161)
and with footnotes in tables (see question 160).

So as well as using the optional argument of \caption
(or whatever) to avoid the footnote migrating to the List
of ..., and putting the object whose caption bears the
footnote in a minipage, one also has to deal with the
tendency of the \caption command to produce the foot-
note’s text twice. For this last problem, there is no
tidy solution this author is aware of. If you're suffering
the problem, a well-constructed \caption command in a
minipage environment within a float, such as:

\begin{figure}
\begin{minipage}{\textwidth}

\caption[Caption for LOF]Y%
{Real caption\footnote{blahl}}
\end{minipage}

\end{figure}

can produce two copies of the footnote body “blah”. (In
fact, the effect occurs with captions that are long enough
to require two lines to be typeset, and so wouldn’t appear
with such a short caption.) The ccaption package’s doc-
umentation describes a really rather awful work-around.

ccaption.sty: macros/latex/contrib/supported/
ccaption

163 Footnotes whose texts are identical

If the same footnote turns up at several places within a
document, it’s often inappropriate to repeat the footnote
in its entirety over and over again. We can avoid rep-
etition by semi-automatic means, or by simply labelling
footnotes that we know we’re going to repeat and then
referencing the result. There is no completely automatic
solution (that detects and suppresses repeats) available.

If you know you only have one footnote, which you
want to repeat, the solution is simple: merely use the op-
tional argument of \footnotemark to signify the repeats:

... \footnote{Repeating note}

...\footnotemark[1]

. which is very easy, since we know there will only ever
be a footnote number 1. A similar technique can be used
once the footnotes are stable, reusing the number that
ETEX has allocated. This can be tiresome, though, as
any change of typesetting could change the relationships
of footnote and repeat: labelling is inevitably better.

Simple hand-labelling of footnotes is possible, using a
counter dedicated to the job:

\newcounter{fnnumber}

...\footnote{Text to repeatl}/
\setcounter{fnnumber}{\thefootnotel}%

...\footnotemark [\thefnnumber]

but this is somewhat tedious. KTEX’s labelling mecha-
nism can be summoned to our aid, but there are ugly

54

error messages before the \ref is resolved on a second
run through BTEX:
...\footnote{Text to repeat\label{fn:repeat}}

...\footnotemark [\ref{fn:repeat}]

This is the cleanest simple way of doing the job. Note
that the \label command must be inside the argument
of \footnote.

The fixfoot package takes away some of the pain of
the matter: you declare footnotes you're going to reuse,
typically in the preamble of your document, using a
\DeclareFixedFoot command, and then use the com-
mand you’ve ‘declared’ in the body of the document:

\DeclareFixedFootnote{\rep}{Text to repeat}
... \rep{}
.. . \rep{}

The package ensures that the repeated text appears at

most once per page: it will usually take more than one
run of ITEX to get rid of the repeats.

fizfoot.sty: macros/latex/contrib/supported/
fixfoot

Q.5 Document management
164 What’s the name of this file

One might want this so as to automatically generate a
page header or footer recording what file is being pro-
cessed. It’s not easy. ..

TEX retains what it considers the name of the job,
only, in the special macro \jobname; this is the name of
the file first handed to TEX, stripped of its directory name
and of any extension (such as .tex). If no file was passed
(i.e., you're using TEX interactively), \jobname has the
value texput (the name that’s given to .log files in this
case).

This is fine, for the case of a small document, held in
a single file; most significant documents will be held in a
bunch of files, and TEX makes no attempt to keep track
of files input to the job. So the user has to keep track,
himself — the only way is to patch the input commands
and cause them to retain details of the file name. This is
particularly difficult in the case of Plain TEX, since the
syntax of the \input command is so peculiar.

In the case of KTEX, the input commands have pretty
regular syntax, and the simplest patching techniques (see
question 190) can be used on them:

\def\ThisFile{\ jobname}
\newcounter{FileStack}
\let\OrigInput\input
\renewcommand{\input}[1]{%
\stepcounter{FileStack}
\expandafter\let
\csname NameStack\theFileStack\endcsname
\ThisFile
\def\ThisFile{#1}%
\OrigInput{#1}/
\expandafter\let\expandafter
\ThisFile
\csname NameStack\theFileStack\endcsname
\addtocounter{FileStack}{-1}%

}

(And similarly for \include.) The code assumes you al-
ways use IWTEX syntax for \input, i.e., always use braces
around the argument.

The FiNK (“File Name Keeper”) package provides a
regular means of keeping track of the current file name
(with its extension), in a macro \finkfile. The bundle
includes a fink.el that provides support under emacs
with AUC-TEX.

fink.sty: macros/latex/contrib/supported/fink

165 All the files used by this document

When you're sharing a document with someone else (per-
haps as part of a co-development cycle) it’s as well to
arrange that both correspondents have the same set of
auxiliary files, as well as the document in question. Your
correspondent obviously needs the same set of files (if you
use the url package, she has to have url too, for example).
But suppose you have a bug-free version of the shinynew
package but her copy is still the unstable original; until
you both realise what is happening, such a situation can
be very confusing.

The simplest solution is the ITEX \listfiles com-
mand. This places a list of the files used and their version
numbers in the log file. If you extract that list and trans-
mit it with your file, it can be used as a check-list in case
that problems arise.

Note that \listfiles only registers things that

input by the “standard” EITEX mechanisms
(\documentclass, \usepackage, \input, \include,
\includegraphics and so on). But if you use TgX prim-
itive syntax, as in

are

\input mymacros

mymacros.tex won’t be listed by \listfiles, since
you’'ve bypassed the mechanism that records its use.

The snapshot package helps the owner of a ITEX doc-
ument obtain a list of the external dependencies of the
document, in a form that can be embedded at the top
of the document. The intended use of the package is the
creation of archival copies of documents, but it has appli-
cation in document exchange situations too.

The bundledoc system uses \listfiles to produce
an archive (e.g., .tar.gz or .zip) of the files needed by
your document; it comes with configuration files for use
with teTeX and mikTeX. It’s plainly useful when you're
sending the first copy of a document.

bundledoc: support/bundledoc

snapshot.sty: macros/latex/contrib/supported/
snapshot

166 Marking changed parts of your document

One often needs clear indications of how a document has
changed, but the commonest technique, “change bars”,
requires surprisingly much trickery of the programmer
(the problem being that TEX ‘proper’ doesn’t provide the
programmer with any information about the “current po-
sition” from which a putative start- or end-point of a bar
might be calculated; PDFTEX does provide the informa-
tion, but we’re not aware yet of any programmer taking

55

advantage of the fact to write a PDFTEX-based changebar
package).

The simplest package that offers change bars is Pe-
ter Schmitt’s backgrnd.texr; this was written as a Plain
TEX application that patches the output routine, but it
appears to work at least on simple KTEX documents.
Wise BTEX users will be alerted by the information that
backgrnd patches their output routine, and will watch its
behaviour very carefully (patching the ITEX output rou-
tine is not something to undertake lightly. . .).

The longest-established solution is the changebar
package, which uses \special commands supplied by the
driver you’re using. You need therefore to tell the pack-
age which driver to generate \specials for (in the same
way that you need to tell the graphics package); the list
of available drivers is pretty restricted, but does include
dvips. The package comes with a shell script chbar.sh (for
use on Unix machines) that will compare two documents
and generate a third which is marked-up with changebar
macros to highlight changes.

The vertbars package uses the techniques of the lineno
package (which must be present); it’s thus the smallest of
the packages for change bar marking, since it leaves all
the trickery to another package.

backgrnd. tex: macros/generic/backgrnd.tex

changebar. sty: macros/latex/contrib/supported/
changebar

lineno.sty: macros/latex/contrib/supported/
lineno

vertbars.sty: macros/latex/contrib/supported/
misc/vertbars.sty

167 Conditional compilation

While BTEX (or any other TgX-derived package) isn’t re-
ally like a compiler, people regularly want to do compiler-
like things using it. A common requirement is conditional
‘compilation’, and several I¥TEX-specific means to this
end are available.

If your requirement is for a document from which
whole chapters (or the like) are missing, consider
the I*TEX \include/\includeonly system. If you
‘\include’ your files (rather than \input them — see
question 215), WTEX writes macro traces of what’s going
on at the end of each chapter to the .aux file; by using
\includeonly, you can give ITEX an exhaustive list of
the files that are needed. Files that don’t get \included
are skipped entirely, but the document processing contin-
ues as if they were there, and page, footnote, and other
numbers are not disturbed. Note that you can choose
which sections you want included interactively, using the
askinclude package.

If you want to select particular pages of your docu-
ment, use Heiko Oberdiek’s pagesel or the selectp pack-
ages. You can do something similar with an existing PDF
document (which you may have compiled using pdfiatex
in the first place), using the pdfpages package. The job is
then done with a document looking like:

\documentclass{article}
\usepackage [final] {pdfpages}
\begin{document}

\includepdf [pages=30-40] {yoursource.pdf}
\end{document}
(To include all of the document, you write
\includepdf [pages=-]{yoursource.pdf}
omitting the start and end pages.)

If you want flexible facilities for including or excluding
small portions of a file, consider the comment, version or
optional packages.

comment allows you to declare areas of a document to
be included or excluded; you make these declarations in
the preamble of your file. Its exclusion method is pretty
robust, and can cope with ill-formed bunches of text (e.g.,
with unbalanced braces or \if commands).

version offers similar facilities to comment.sty; it’s
far “lighter weight”, but is less robust (and in particu-
lar, cannot deal with very large areas of text being in-
cluded/excluded).

optional defines a command \opt; its first argument
is an ‘inclusion flag’, and its second is text to be included
or excluded. Text to be included or excluded must be
well-formed (nothing mismatched), and should not be too
big — if a large body of text is needed, \input should be
used in the argument. The documentation (in the pack-
age file itself) tells you how to declare which sections are
to be included: this can be done in the document pream-
ble, but the documentation also suggests ways in which
it can be done on the command line that invokes IXTEX,
or interactively.

Finally, verbatim (which should be available in any
distribution) defines a comment environment, which en-
ables the dedicated user of the source text editor to sup-
press bits of a ITEX source file.

askinclude. sty: macros/latex/contrib/other/
misc/askinclude.sty

comment.sty: macros/latex/contrib/other/comment

optional.sty: macros/latex/contrib/other/misc/
optional.sty

pagesel.sty: macros/latex/contrib/supported/
oberdiek

pdfpages.sty: macros/latex/contrib/supported/
pdfpages

selectp.sty: macros/latex/contrib/other/misc/
selectp.sty

verbatim. sty: Distributed as part of
macros/latex/required/tools

verston.sty: macros/latex/contrib/other/misc/
version.sty

168 Bits of document from other directories

A common way of constructing a large document is to
break it into a set of files (for example, one per chapter)
and to keep everything related to each of these subsidiary
files in a subdirectory.

Unfortunately, TEX doesn’t have a changeable “cur-
rent directory”, so that all files you refer to have to be
specified relative to the same directory as the main file.
Most people find this counter-intuitive.

56

It may be appropriate to use the “path extension”
technique of question 104 to deal with this problem. How-
ever, if there several files with the same name in your
document, such as chapter1l/figl.eps and chapter2/
figl.eps, you're not giving TEX any hint as to which
you're referring to when in the main chapter file you say
\input{sect1}; while this is readily soluble in the case of
human-prepared files (just don’t name them all the same),
automatically produced files have a way of having repeti-
tious names, and changing them is a procedure prone to
error.

The import package comes to your help here: it
defines an \import command that accepts a full path
name and the name of a file in that directory, and ar-
ranges things to “work properly”. So, for example, if
/home/friend/results.tex contains

Graph: \includegraphics{picture}

\input{explanation}
then \import{/home/friend/}{results} will include
both graph and explanation as one might hope. A
\subimport command does the same sort of thing for
a subdirectory (a relative path rather than an absolute
one), and there are corresponding \includefrom and
\subincludefrom commands.

import.sty: macros/latex/contrib/supported/
misc/import.sty

169 Version control using RCS or CVS

If you use RCS or CVS to maintain your (I2)TEX docu-
ments under version control, you may need some mecha-
nism for including the RCS keywords in your document,
in such a way that they can be typeset (that is, rather
than just hiding them inside a comment).

The most complete solution is to use the (IWTEX) pack-
age rcs, which allows you to parse and display the con-
tents of RCS keyword fields in an extremely flexible way.

If you need a solution which works without using ex-
ternal packages, or which will work in plain TEX, then
you can use the following quick (but usually adequate)
hack:

\def\RCS$#1: #2 ${\expandafter
\def\csname RCS#1\endcsname{#21}7
}
\RCS$Revision: 1.89 $ % or any RCS keyword
\RCS$Date: 2002/05/21 11:02:13 $

\date{Revision \RCSRevision, \RCSDate}

rcs.sty: macros/latex/contrib/supported/rcs

Q.6 Hyphenation

170 My words aren’t being hyphenated

Let’s assume you’ve selected the right TEX ‘language’ —
as explained in question 41, you’re not likely to get the
correct results typesetting one language using the hyphen-
ation rules of another. (Select the proper language, us-
ing babel if you're a ITEX user. This may reveal that
you need another set of hyphenation patterns; see ques-
tion 174 for advice on how to install it.)
So what else can go wrong?

e Since TEX version 3.0, the limits on how near to
either end of a word hyphenation may take place
have been programmable (see question 171), and
for some reason the values in question may have
been corrupted in some macros you are using. TEX
won’t hyphenate less than \lefthyphenmin char-
acters after the start of a word, nor less than
\righthyphenmin before the end of a word; thus
it won’t hyphenate a word shorter than the sum of
the two minima, at all. For example, since the min-
ima are 2 and 3 for English, TEX won’t hyphenate
a word shorter than 5 letters long, if it believes the
word to be English.

e TEX won’t hyphenate a word that’s already been
hyphenated. For example, the (caricature) English
surname Smyth-Postlethwaite wouldn’t hyphenate,
which could be troublesome. This is correct English
typesetting style (it may not be correct for other
languages), but if needs must, you can replace the
hyphen in the name with a \hyph command, defined

\def\hyph{\penaltyO\hskipOpt\relax}
This is not the sort of thing this FAQ would ordinar-
ily recommend. .. The hyphenat package defines a
bundle of such commands (for introducing hyphen-
ation points at various punctuation characters).

e There may be accents in the word. The causes of
and remedies for this effect are discussed in ques-
tion 173.

e The hyphenation may simply not have been spot-
ted; while TEX’s algorithm is good, it’s not infalli-
ble, and it does miss perfectly good hyphenations in
some languages. When this happens, you need to
give TEX explicit instructions on how to hyphenate.

The \hyphenation command allows you to give explicit
instructions. Provided that the word will hyphenate at all
(that is, it is not prevented from hyphenating by any of
the other restrictions above), the command will override
anything the hyphenation patterns might dictate. The
command takes one or more hyphenated words as ar-
gument — \hyphenation{ana-lysis pot-able}; note
that (as here, for analysis) you can use the command
to overrule TEX’s choice of hyphenation (ana-lysis is the
British etymological hyphenation; some feel the American
hyphenation feels ‘unfortunate’. . .).

hyphenat.sty: macros/latex/contrib/supported/
hyphenat

171 Weird hyphenation of words

If your words are being h-yphenated, like this, with jus-
t single letters at the beginning or the end of the word,
you may have a version mismatch problem. TEX’s hy-
phenation system changed between version 2.9 and 3.0,
and macros written for use with version 2.9 can have this
effect with a version 3.0 system. If you are using Plain
TEX, make sure your plain.tex file has a version number
which is at least 3.0, and rebuild your format. If you are
using IATEX 2.09 your best plan is to upgrade to IMTEX 2¢.
If for some reason you can’t, the last version of M TEX 2.09
(released on 25 March 1992) is still available (for the time
being at least) and ought to solve this problem.

o7

If you're using ITREX 2¢, the problem probably arises
from your hyphen.cfg file, which has to be created if
you’re using a multi-lingual version.

A further source of oddity can derive from the 1995
release of Cork-encoded fonts (see question 42), which in-
troduced an alternative hyphen character. The ETEX 2¢
configuration files in the font release specified use of the
alternative hyphen, and this could produce odd effects
with words containing an explicit hyphen. The font con-
figuration files in the December 1995 release of TEX 2¢
do not use the alternative hyphen character, and there-
fore removed this source of problems; the solution, again,
is to upgrade your IMTEX.

ETEX 2.09: obsolete/macros/latex209/distribs/
latex209.tar

plain. ter: macros/plain/base

172 (Merely) peculiar hyphenation

You may have found that TEX’s famed automatic word-
division does not produce the break-points recommended
by your dictionary. This may be because TEX is set up
for American English, whose rules for word division (as
specified, for example, in Webster’s Dictionary) are com-
pletely different from the British ones (as specified, for
example, in the Oxford Dictionaries). This problem is
being addressed by the UK TgEX User community (see
Baskerville, issue 4.4) but an entirely satisfactory solu-
tion will take time; the current status is to be found on
CTAN (see question 174 for instructions on adding this
new “language”).

UK patterns: language/hyphenation/ukhyphen.tex

173 Accented words aren’t hyphenated

TEX’s algorithm for hyphenation gives up when it encoun-
ters an \accent command; there are good reasons for
this, but it means that quality typesetting in non-English
languages can be difficult.

For TEX macro packages, you can avoiding the effect
by using an appropriately encoded font (for example, a
Cork-encoded font — see question 42) which contains ac-
cented letters as single glyphs. I2TEX users can achieve
this end simply by adding the command

\usepackage [T1]{fontenc}

to the preamble of their document. Other encodings (no-
tably LY1, promoted by Y&Y — see question 55) may be
used in place of T1. Indeed, most current 8-bit TEX font
encodings will ‘work’ with the relevant sets of hyphen-
ation patterns.

In the future, perhaps, Omega (see question 236) will
provide a rather different solution.

174 Using a new language with Babel

Babel is capable of working with a large range of lan-
guages, and a new user often wants to use a language
that her TEX installation is not set up to employ. Simply
asking Babel to use the language, with the command
\usepackage [catalan] {babel}
provokes the warning message
Package babel Warning: No hyphenation patterns
. were loaded for the language ‘Catalan’

. I will use the patterns loaded for
... \language=0 instead.

(The layout of the error message isn’t quite like this; the
language name s capitalised, though.)

The problem is that your TEX system doesn’t know
how to hyphenate Catalan text: you need to tell it how
before Babel can do its work properly. To do this, for
KTEX installations, one needs to change language.dat
(which is part of the Babel installation); it will contain a
line

%catalan cahyphen.tex

which, if you remove the comment marker, is supposed
to instruct IATEX to load Catalan hyphenation patterns
when you tell it to build a new format.

Unfortunately, in many Babel distributions, the line
just isn’t right — you need to check the name of the
file containing the patterns you’re going to use. As you
can see, in the author’s system, the name is supposed
to be cahyphen.tex; however the file actually present
on the system is cahyph.tex — fortunately, the error
should prove little more than an inconvenience (most of
the files are in better distributions anyway, but an elu-
sive one may be found on CTAN; if you have to retrieve a
new file, ensure that it’s correctly installed, for which see
question 102).

Finally, you need to regenerate the formats used (in
fact, most users of Babel are using it in their I/ TEX docu-
ments, so regenerating the A TEX-related formats will or-
dinarily be enough; however, the author always generates
the lot, regardless).

teTEX, fpTEX To regenerate all formats, do:
fmtutil --all
If you’re willing to think through what you’re doing
(this is not for the faint-hearted), you can select a
sequence of formats and for each one, run:
fmtutil --byfmt (formatname)
where formatname is something like ‘latex’, or:
fmtutil --byhyphen (hyphenfile)
where hyphenfile is the file specifying hyphen-
ation to the format — usually language.dat

MikTEX On a MikTeX distribution earlier than v2.0,
do:
Start—Programs—MikTeX—Maintenance—
Create all format files
or get a DOS window and run:
initexmf --dump
On a MikTeX distribtution v2.0 or later, the whole
procedure can be done via the GUI. To select the
new language, do:
Start—Programs—MikTeX 2—MikTeX Options,
and select the Languages tab. Select your language
from the list, press the Apply button, and then the
OK button. Then select the General tab and press
the Update Now button.
Otherwise, edit the language.dat file (as outlined
above), and then run:
initexmf --dump
just as for a pre-v2.0 system.

Caveat: It is (just) possible that your TEX system may
run out of “pattern memory” while generating the new

58

format. Most TEX implementations have fixed-size ar-
rays for storing the details of hyphenation patterns, but
although their size is adjustable in most modern distri-
butions, actually changing the size is a fiddle. If you do
find you’ve run out of memory, it may be worth scanning
the list of languages in your language.dat to see whether
any could reasonably be removed.

babel: macros/latex/required/babel

hyphenation patterns: language/hyphenation

175 Stopping all hyphenation

It may seem an odd thing to want to do (after all, one of
TEX’s great advertised virtues is the quality of its hyphen-
ation) but it’s sometimes necessary. The real problem is,
that the quality of TEX’s is by default largely dependent
on the presence of hyphenation; if you want to abandon
hyphenation, something has to give.

TEX (slightly confusingly) offers four possible mecha-
nisms for suppressing hyphenation (there were only two
prior to the extensions that arrived with TEX version 3).

First, one can set the hyphenation penalties
\hyphenpenalty and \exhyphenpenalty to an ‘infinite’
value (that is to say, 10000). This means that all hy-
phenations will sufficiently penalise the line that would
contain them, that the hyphenation won’t happen. The
disadvantage of this method is that TEX will re-evaluate
any paragraph for which hyphenations might help, which
will slow TEX down.

Second, one can select a language for which no hy-
phenation patterns exist. Some distributions create a
language nohyphenation, and the hyphenat package uses
this technique for its \nohyphens command which sets its
argument without any hyphenation.

Third, one can set \left- and/or \righthyphenmin
to a sufficiently large value that no hyphenation could
possibly succeed, since the minimum is larger than the
the length of the longest word TEX is willing to hyphen-
ate (the appropriate value is 62).

Fourth, one can suppress hyphenation for all text us-
ing the current font by the command

\hyphenchar\font=-1

This isn’t a particularly practical way for users to sup-
press hyphenation — the command has to be issued for
every font the document uses — but it’s how ITEX itself
suppresses hyphenation in tt and other fixed-width fonts.

Which of the techniques you should use depends on
what you actually want to do. If the text whose hyphen-
ation is to be suppressed runs for less than a paragraph,
your only choice is the no-hyphens language: the language
value is preserved along with the text (in the same way
that the current font is); the values for penalties and hy-
phen minima active at the end of a paragraph are used
when hyphenation is calculated.

Contrariwise, if you are writing a multilanguage doc-
ument using the babel package, you cannot suppress hy-
phenation throughout using either the no-hyphens lan-
guage or the hyphen minima: all those values get changed
at a babel language switch: use the penalties instead.

If you simply switch off hyphenation for a good bit of
text, the output will have a jagged edge (with many lines

seriously overfull), and your (I#)TEX run will bombard
you with warnings about overfull and underfull lines. To
avoid this you have two options. You may use \sloppy
(or its environment version sloppypar), and have TEX
stretch what would otherwise be underfull lines to fill the
space offered, and wrap other lines, while prematurely
wrapping overfull lines and stretching the remainder. Al-
ternatively, you may set the text ragged right (see ques-
tion 129), and at least get rid of the overfull lines; this
technique is ‘traditional’ (in the sense that typists do it)
and may be expected to appeal to the specifiers of eccen-
tric document layouts (such as those for dissertations),
but for once their sense conforms with typographic style.
(Or at least, style constrained in this curious way.)

hyphenat.sty: macros/latex/contrib/supported/
hyphenat

Q.7 0Odds and ends
176 Typesetting all those TpX-related logos

Knuth was making a particular point about the capabil-
ities of TEX when he defined the logo. Unfortunately,
many believe, he thereby opened floodgates to give the
world a whole range of rather silly ‘bumpy road’ logos
such as AAS-TEX, PICTEX, B1BTEX, and so on, produced
in a flurry of different fonts, sizes, and baselines — indeed,
everything one might hope to cause them to obstruct the
reading process. In particular, Lamport invented ITEX
(silly enough in itself) and marketing input from Addison-
Wesley led to the even stranger current logo IATEX 2¢.

Sensible users don’t have to follow this stuff wherever
it goes, but, for those who insist, a large collection of
logos is defined in the teznames package (but note that
this set of macros isn’t entirely reliable in I¥TEX 2¢). The
METAFONT and MetaPost logos can be set in fonts that
KTEX 2: knows about (so that they scale with the sur-
rounding text) using the mflogo package; but be aware
that booby-traps surround the use of the Knuthian font
for MetaPost (you might get META O T). You needn’t
despair, however — the author himself uses just ‘Meta-
Post’.

For those who don’t wish to acquire the ‘proper’ logos,
the canonical thing to do is to say AMS-\TeX{} (AMS-
TEX) for AMS-TEX, Pic\TeX{} (PicTEX) for PICTEX,
Bib\TeX{} (BibTEX) for BIBTEX, and so on.

While the author of this FAQ list can’t quite bring
himself to do away with the bumpy-road logos herein, he
regularly advises everyone else to. ..

mflogo.sty: macros/latex/contrib/supported/
mflogo

texnames.sty: macros/eplain/texnames.sty

177 Referring to things by their name

ETEX’s labelling mechanism is designed for the imper-
sonal world of the academic publication, in which every-
thing has a number: an extension is necessary if we are to
record the name of things we’ve labelled. The two pack-
ages available extend the KTEX sectioning commands to
provide reference by the name of the section.

59

The titleref package is a simple extension which pro-
vides the command \titleref; it is a stand-alone pack-
age.

The nameref package employs the techniques of the
hyperref package to define a \nameref command; it will
work in documents that have hyperref loaded.

nameref.sty: Distributed with
macros/latex/contrib/supported/hyperref

titleref.sty: macros/latex/contrib/other/misc/
titleref.sty

178 How to do bold-tt or bold-sc

ITEX, as delivered, offers no means of handling bold
“teletype” or small-caps fonts. There’s a practical reason
for this (Knuth never designed such fonts), but there are
typographical considerations too (the “medium weight”
cmtt font is already pretty bold (by comparison with
other fixed-width fonts), and bold small-caps is not pop-
ular with many professional typographers).

There’s a set of “extra” METAFONT files on that pro-
vide bold versions of both cmtt and cmcsc (the small caps
font). With modern TEX distributions, one may bring
these fonts into use simply by placing them in an appro-
priate place in the texmf tree (see question 103); TEX
(and friends) will automatically build whatever font files
they need when you first make reference to them. There’s
a jiffy package bold-extra that builds the necessary font
data structures so that you can use the fonts within IXTEX.

If you need to use Type 1 fonts, you can’t proceed
with Knuth-style fonts, since there are no Type 1 ver-
sions of the mf-extra set. However, commercial fixed-
width fonts (including the default Courier) almost al-
ways come with a bold variant, so that’s not a problem.
Furthermore PSNFSS (see question 82) typically provides
“faked” small caps fonts, and has no compunctions about
providing them in a bold form.

bold-eztra.sty: macros/latex/contrib/other/
misc/bold-extra.sty

bold tt and small caps fonts:
fonts/cm/mf-extra/bold

R Symbols, etc.

179 Symbols for the number sets

It is a good idea to have commands such as \R for the real
numbers and other standard number sets. Traditionally
these were typeset in bold. Because mathematicians usu-
ally do not have access to bold chalk, they invented the
special symbols that are now often used for \R, \C, etc.
These symbols are known as “blackboard bold”. Before
insisting on using them, consider whether going back to
the old system of ordinary bold might not be acceptable
(it is certainly simpler).

A set of blackboard bold capitals is available in the
AMS “msbm” fonts (“msbm” is available at a range of
design sizes, with names such as “msbm10”). The pair
of font families (the other is called “msam”) have a large
number of mathematical symbols to supplement the ones
in the standard TEX distribution, and are available in

Type 1 format with most modern distributions. Support
files for using the fonts, both under Plain TEX and ETEX
(packages amssymb and amsfonts), are available.

Another complete set of blackboard bold fonts written
in METAFONT is the bbold family. This set has the inter-
esting property of offering blackboard bold forms of lower-
case letters, something rather rarely seen on actual black-
boards; the font source directory also contains sources for
a ITEX package that enables use of the fonts. The fonts
are not available in Type 1 format.

An alternative source of Type 1 fonts with blackboard
bold characters may be found in the steadily increasing
set of complete families, both commercial and free, that
have been prepared for use with (I4)TEX (see question 86).
Of the free sets, the tzfonts and pzfonts families both
come with replicas of msam and msbm, and the mathpazo
family includes a “mathematically significant” choice of
blackboard bold characters.

The “lazy person’s” blackboard bold macros:

\newcommand{\R}{{\sf R\hspacex{-0.9ex}/
\rule{0.15ex}{1.5ex}\hspace*{0.9ex}}}
\newcommand{\N}{{\sf N\hspace*{-1.0ex}%
\rule{0.15ex}{1.3ex}\hspace*{1.0ex}}}
\newcommand{\Q}{{\sf Q\hspacex{-1.1lex}/
\rule{0.15ex}{1.5ex}\hspace*{1l.1lex}}}
\newcommand{\C}{{\sf C\hspacex{-0.9ex1}
\rule{0.15ex}{1.3ex}\hspace*{0.9ex}}}
work well at normal size if the surrounding text is cmr10.
However, they are not part of a proper maths font, and
so do not work in sub- and superscripts. Moreover, the
size and position of the vertical bar can be affected by the
font of the surrounding text.

AMS support files (Plain):
fonts/amsfonts/plaintex

AMS support files (LaTeX): fonts/amsfonts/latex
AMS symbol fonts: fonts/amsfonts/sources/symbols

AMS symbol fonts in Type 1 format: Browse
fonts/amsfonts/ps-typel

bbold fonts: fonts/bbold
mathpazo fonts: fonts/mathpazo
pzfonts: fonts/pxfonts

tzfonts: fonts/txfonts

180 Better script fonts for maths

The font selected by \mathcal is the only script font ‘built
in’. However, there are other useful calligraphic fonts in-
cluded with modern TEX distributions.

Euler The eucal package (part of most sensible TEX
distributions; the fonts are part of the AMS font
set) gives a slightly curlier font than the default.
The package changes the font that is selected by
\mathcal.

Type 1 versions of the fonts are available in the AMS
fonts distribution.

RSFS The mathrsfs package uses a really fancy script
font (the name stands for “Ralph Smith’s Formal
Script”) which is already part of most modern TEX

60

distributions. The package creates a new command
\mathscr.
Type 1 versions of the font have been made available
by Taco Hoekwater.

Zapf Chancery is the standard PostScript calligraphic
font. There is no package but you can easily make
it available by means of the command

\DeclareMathAlphabet{\mathscr}{0T1}{pzc}%
{m}{it}
in your preamble. You may find the font rather too
big; if so, you can use a scaled version of it like this:
\DeclareFontFamily{0T1}{pzc}{}
\DeclareFontShape{0T1}{pzcHm}{it}%
{<—> s * [0.900] pzcmi7t}{}
\DeclareMathAlphabet{\mathscr}{0T1}{pzc}
{m}{it}
Adobe Zapf Chancery (which the above exam-
ples use) is distributed in any but the most basic
PostScript printers. A substantially identical font
(to the the extent that the same metrics may be
used) is available from URW and is distributed with
ghostscript.

Examples of the available styles are available on CTAN.
eucal.sty: fonts/amsfonts/latex/eucal.sty
euler fonts: fonts/amsfonts/sources/euler

euler fonts, in Type 1 format:
fonts/amsfonts/ps-typel

ghostscript: Browse nonfree/support/ghostscript

mathrsfs.sty: Distributed as part of
macros/latex/contrib/supported/jknappen

rsfs fonts: fonts/rsfs

rsfs fonts, in Type 1 format:
fonts/rsfs/ps-typel/hoekwater

Script font examples: info/symbols/math/
scriptfonts.pdf

181 Setting bold Greek letters in BTEX

The issue here is complicated by the fact that \mathbf
(the command for setting bold text in TEX maths) affects
a select few mathematical symbols (the uppercase Greek
letters). However lower-case Greek letters behave differ-
ently from upper-case Greek letters (due to Knuth’s eso-
teric font encoding decisions). However, \mathbf can’t be
used even for upper-case Greek letters in the ApS-ITEX
amsmath package, which disables this font-switching and
you must use one of the techniques outlined below.

The Plain TEX solution does work, in a limited way:

{\boldmathθ}
but \boldmath may not be used in maths mode, so this
‘solution’ requires arcana such as:

$... \mbox{\boldmath$\theta$} ...$
which then causes problems in superscripts, etc.

These problems may be addressed by using a bold
mathematics package.

e The bm package, which is part of the ITEX tools
distribution, defines a command \bm which may be
used anywhere in maths mode.

e The amsbsy package (which is part of ApS-ETEX)
defines a command \boldsymbol, which (though
slightly less comprehensive than \bm) covers almost
all common cases.

All these solutions cover all mathematical symbols,
not merely Greek letters.

bm.sty: Distributed as part of
macros/latex/required/tools

amsbsy. sty: Distributed as part of the ApS-BTEX
distribution macros/latex/required/amslatex

amsmath.sty: Distributed as part of the ApS-IMTEX
distribution macros/latex/required/amslatex

182 The Principal Value Integral symbol

This symbol (an integral sign, ‘crossed’) does not appear
in any of the fonts ordinarily available to (I&)TEX users,
but it can be created by use of the following macros:

\def\Xint#1{\mathchoice
{\XXint\displaystyle\textstyle{#1}}/
{\XXint\textstyle\scriptstyle{#1}1}/
{\XXint\scriptstyle\scriptscriptstyle{#1}}/
{\XXint\scriptscriptstyle

\scriptscriptstyle{#1}}V
\!\int}

\def\XXint#1#2#3{{%
\setbox0=\hbox{$#1{#2#3}{\int}$}
\vcenter{\hbox{$#2#3%$}}\kern-.5\wd0}}

\def\ddashint{\Xint=}

\def\dashint{\Xint-}

\dashint gives a single-dashed integral sign, \ddashint
a double-dashed one.

183 How to use the underscore character

_ is ordinarily used in TEX to
indicate a subscript in maths mode; if you type _ in the
course of ordinary text, TEX will complain. If you're writ-
ing a document which will contain a large number of un-
derscore characters, the prospect of typing _ (or, worse,
\textunderscore) for every one of them will daunt most
ordinary people.

Moderately skilled macro programmers can readily
generate a quick hack to permit typing _ to mean ‘text
underscore’. However, the code is somewhat tricky, and
more importantly there are significant points where it’s
easy to get it wrong. There is therefore a package
underscore which provides a general solution to this re-
quirement.

The underscore character

underscore.sty: macros/latex/contrib/other/
misc/underscore.sty

184 How to type an ‘@’ sign?

Long ago, some packages used to make the ‘@Q’ sign active,
so that special measures were needed to type it. While
those packages are still in principle available, few people
use them, and those that do use them have ready access
to rather good documentation.

Ordinary people (such as the author of this FAQ) need
only type ‘@Q’.

61

185 Typesetting the Euro sign

The European currency “Euro” is represented by a sym-
bol of somewhat dubious design, but it’s an important
currency and (I&)TEX users need to typeset it.

Note that the Commission of the European Commu-
nity at first deemed that the Euro symbol should always
be set in a sans-serif font; fortunately, this eccentric ruling
has now been rescinded, and one may apply best type-
setting efforts to making it appear at least slightly “re-
spectable” (typographically).

The TS1-encoded fonts provided as part of the EC font
distribution provide Euro glyphs. The fonts are called
Text Companion (TC) fonts, and offer the same range
of faces as do the EC fonts themselves. The textcomp
package provides a \texteuro command for accessing the
symbol, which selects a symbol to match the surrounding
text. The design of the symbol in the TC fonts is not uni-
versally loved. .. Nevertheless, use the TC font version of
the symbol if you are producing documents using Knuth’s
Computer Modern Fonts.

The latin9 input encoding defined by the inputenc
package has a euro character defined (character position
164, occupied in other ISO Latin character sets by the
“currency symbol”). The encoding uses the command
\texteuro for the character; at present that command
is only available from the textcomp package. There is a
MicroSoft code page position, too, but standardisation of
such things proceeds via rather different routes and the
ITEX project hasn’t yet been given details of the change.

Outline fonts which contain nothing but Euro symbols
are available (free) from Adobe (see ftp://ftp.adobe.
com/pub/adobe/type/win/all/eurofont.exe) — the
file is packaged as a Windows self-extracting executable,
but it may be decoded as a .zip format achive on other
operating systems. The euro bundle contains metrics,
dvips map files, and macros (for Plain TEX and KTEX),
for using these fonts in documents. BTEX users will find
two packages in the bundle: eurosans only offers the sans-
serif version (to conform with the obsolete ruling about
sans-serif-only symbols; the package provides the com-
mand \euro), whereas europs matches the Euro symbol
with the surrounding text (providing the command \EUR).
To use either package with the latin9 encoding, you need
to define \texteuro as an alias for the euro command the
package defines.

The Adobe fonts are probably the best bet for use in
non-Computer Modern environments. They are appar-
ently designed to fit with Adobe Times, Helvetica and
Courier, but can probably fit with a wider range of mod-
ern fonts.

The eurofont package provides a compendious analysis
of the “problem of the euro symbol” in its documentation,
and offers macros for configuring the source of the glyphs
to be used; however, it seems rather large for everyday
use.

Euro symbols are found in several other places, which
we list here for completeness.

The marvosym fonts contain a Euro symbol among
many other good things; the font on CTAN is not Adobe
ATM compatible, but a compatible version is available
free from Y&Y (see http://www.YandY.com/download/

marvosym.zip). The font on CTAN comes with a set of
macros to typeset all the symbols it contains.

Other METAFONT-based bundles containing Euro
symbols are to be found in china2e (whose primary aim
is Chinese dates and suchlike matters) and the eurosym
fonts.

chinale bundle: macros/latex/contrib/supported/
china2e

EC fonts: fonts/ec
euro fonts: fonts/euro

eurofont.sty: macros/latex/contrib/supported/
eurofont

eurosym fonts: fonts/eurosym
marvosym fonts: fonts/psfonts/marvosym

textcomp.sty: Part of the WTEX distribution.

S Macro programming

186 Finding the width of a letter, word, or
phrase

Put the word in a box, and measure the width of the box.
For example,

\newdimen\stringwidth

\setbox0=\hbox{hi}

\stringwidth=\wdO
Note that if the quantity in the \hbox is a phrase, the ac-
tual measurement only approximates the width that the
phrase will occupy in running text, since the inter-word
glue can be adjusted in paragraph mode.

The same sort of thing is expressed in ETEX by:
\newlength{\gnat}
\settowidth{\gnat}{\textbf{small}}

This sets the value of the length command \gnat to the
width of “small” in bold-face text.

187 How to change BTEX’s “fixed names”

ETEX document classes define several typographic op-
erations that need ‘canned text’ (text not supplied by
the user). In the earliest days of IATEX 2.09 these bits
of text were built in to the body of KTEX’s macros and
were rather difficult to change, but “fixed name” macros
were introduced for the benefit of those wishing to use
ETEX in languages other than English. For example,
the special section produced by the \tableofcontents
command is always called \contentsname (or rather,
what \contentsname is defined to mean). Changing the
canned text is now one of the easiest customisations a
user can do to INTEX.

The canned text macros are all of the form
\(thing)name, and changing them is simplicity itself.
Put:

\renewcommand{\(thing)name}{Res minor}

in the preamble of your document, and the job is done.
(However, beware of the babel package, which requires
you to use a different mechanism: be sure to check ques-
tion 188 if you’re using it.)

62

The names that are defined in the standard ITEX
classes (and the makeidexr package) are listed below.
Some of the names are only defined in a subset of the
classes (and the letter class has a set of names all of
its own); the list shows the specialisation of each name,
where appropriate.

\abstractname Abstract

\alsoname see also (makeidx package)
\appendixname Appendix

\bibname Bibliography (report,book)
\ccname cc (letter)

\chaptername Chapter (report,book)
\contentsname Contents

\enclname encl (letter)

\figurename Figure (for captions)
\headtoname To (letter)

\indexname Index

\listfigurename List of Figures
\listtablename List of Tables

\pagename Page (letter)

\partname Part

\refname References (article)
\seename see (makeidr package)
\tablename Table (for captions)

188 Changing the words babel uses

TEX uses symbolic names for many of the automatically-
generated text it produces (special-purpose section head-
ers, captions, etc.). As noted in question 187 (which in-
cludes a list of the names themselves), this enables the
user to change the names used by the standard classes,
which is particularly useful if the document is being pre-
pared in some language other than KTEX’s default En-
glish. So, for example, a Danish author may wish that her
table of contents was called “Indholdsfortegnelse”, and so
would expect to place a command

\renewcommand{\contentsname},
{Indholdsfortegnelse}
in the preamble of her document.

However, it’s natural for a user of a non-English lan-
guage to use babel, because it offers many conveniences
and typesetting niceties for those preparing documents
in those languages. In particular, when babel is selecting
a new language, it ensures that IATEX’s symbolic names
are translated appropriately for the language in question.
Unfortunately, babel’s choice of names isn’t always to ev-
eryone’s choice, and there is still a need for a mechanism
to replace the ‘standard’ names.

Whenever a new language is selected, babel resets all
the names to the settings for that language. In particular,
babel selects the document’s main language when \begin
{document} is executed, which immediately destroys any
changes to these symbolic names made in the prologue of
a document that uses babel.

Therefore, babel defines a command to enable users
to change the definitions of the symbolic names, on a
per-language basis: \addto\captions(language) is the
thing ((language) being the language option you gave to
babel in the first place). For example:
\addto\captionsdanish{’

\renewcommand{\contentsname},

{Indholdsfortegnelse}%
}

189 Running equation, figure and table
numbering

Many ITEX classes (including the standard book class)
number things per chapter; so figures in chapter 1 are
numbered 1.1, 1.2, and so on. Sometimes this is not ap-
propriate for the user’s needs.

Short of rewriting the whole class, one may use one
of the removefr and remreset packages; both define a
\@removefromreset command, and having included the
package one writes something like:

\makeatletter
\Q@removefromreset{figure}{chapter}

and the automatic renumbering stops. You then need to

redefine the way in which the figure number (in this case)

is printed:
\renewcommand{\thefigure}{\@arabic\c@figurel}
\makeatother

(remember to do the whole job, for every counter
you want to manipulate, within \makeatletter
\makeatother).

The technique may also be used to change where in
a multilevel structure a counter is reset. Suppose your
class numbers figures as (chapter).(section).(figure), and
you want figures numbered per chapter, try:

\@removefromreset{figure}{section}

\@addtoreset{figure}{chapter}

\renewcommand{\thefigurel}y
{\thechapter.\@arabic\c@figure}

(the command \@addtoreset is a part of KTEX itself).
The chngentr package provides a simple means to

access the two sorts of changes discussed, defining

\counterwithin and \counterwithout commands.

chngentr. sty: macros/latex/contrib/supported/
misc/chngentr.sty

removefr. tex: macros/latex/contrib/other/
fragments/removefr.tex (note, this
is constructed as a “fragment” for use
within other packages: load by \input
{removefr})

remreset.sty: Distributed as part of
macros/latex/contrib/supported/carlisle

190 Patching existing commands

In the general case (possibly sticking something in the
middle of an existing command) this is difficult. How-
ever, the common requirement, to add some code at the
beginning or the end of an existing command, is concep-
tually quite easy. Suppose we want to define a version of
a command that does some small extension of its original
definition: we would naturally write:

\renewcommand{\splat}{\mumble\splat}

However, this would not work: a call to \splat would ex-
ecute \mumble, and the call the redefined \splat again;
this is an infinite recursive loop, that will quickly exhaust

TEX’s memory.

63

Fortunately, the TEX primitive \let command comes
to our rescue; it allows us to take a “snapshot” of the
current state of a command, which we can then use in
the redefinition of the command. So:

\let\0ldSmooth\smooth
\renewcommand{\smooth}{\mumble\0ldSmooth}

effects the required patch, safely. Adding things at the
end of a command works similarly. If \smooth takes ar-
guments, one must pass them on:

\renewcommand{\smooth} [2]%
{\mumble\0ldSmooth{#1}{#2}}

The general case may be achieved in two ways. First,
one can use the IWTEX command \CheckCommand; this
compares an existing command with the definition you
give it, and issues a warning if two don’t match. Use is
therefore:

\CheckCommand{\complex}{{original definition)}
\renewcommand{\complex}{(new definition)}
This technique is obviously somewhat laborious, but if
the original command comes from a source that’s liable to
change under the control of someone else, it does at least
warn you that your patch is in danger of going wrong.

Otherwise, you may use one of the patch or patchcmd
systems.

Patch gives you an ingenious (and difficult to under-
stand) mechanism, and comes as an old-style BTEX doc-
umented macro file. Sadly the old-style doc macros are
no longer available, but the file (patch.doc) may be in-
put directly, and the documentation may be read (un-
typeset). Roughly speaking, one gives the command a
set of instructions analagous to sed substitutions, and it
regenerates the command thus amended. The author of
this FAQ has (slightly reluctantly) given up using patch. . .

The patchcmd package addresses a slightly simpler
task, by restricting the set of commands that you may
patch; you mayn’t patch any command that has an op-
tional argument, though it does deal with the case of
commands defined with \DeclareRobustCommand. The
package defines a \patchcommand command, that takes
three arguments: the command to patch, stuff to stick at
the front of its definition, and stuff to stick on the end of
its definition. So, if \b contains “b”, then \patchcommand
\b{a}{c} will produce a new version of \b that contains
“abc”.

patch.doc: macros/generic/patch.doc

patchcommand. sty: macros/latex/contrib/
supported/patchcmd

191 \@ and @ in macro names

Macro names containing @ are internal to KTEX, and
without special treatment just don’t work in ordinary use.
An exemplar of the problems caused is discussed in ques-
tion 232.

The problems users see are caused by copying bits
of a class (.cls file) or package (.sty file) into a docu-
ment, or by including a class or package file into a KTEX
document by some means other than \documentclass or
\usepackage. KTEX defines internal commands whose
names contain the character @ to avoid clashes between
its internal names and names that we would normally

use in our documents. In order that these commands
may work at all, \documentclass and \usepackage play
around with the meaning of @.

If you’ve included a file wrongly, you solve the problem
by using the correct command.

If you’re using a fragment of a package or class, you
may well feel confused: books such as The RATEX Com-
panion (see question 22) are full of fragments of packages
as examples for you to employ.

For example, there’s a lengthy section in The Com-
panion about \@startsection and how to use it to con-
trol the appearance of section titles. Page 15 discusses
the problem; and suggests that you make such changes
in the document preamble, between \makeatletter and
\makeatother. So the redefinition of \subsection on
page 26 could be:

\makeatletter
\renewcommand{\subsection}{\@startsection
{subsection}’ % name

{\normalfont\normalsize\itshapel}}/ style
\makeatother

The alternative is to treat all these fragments as a
package proper, bundling them up into a .sty file and
including them with \usepackage. (This approach is
marginally preferable, from the IATEX purist’s point of
view.)

192

Sometimes IMTEX saves data it will reread later. These
data are often the argument of some command; they are
the so-called moving arguments. (‘Moving’ because data
are moved around.) Places to look for are all arguments
that may go into table of contents, list of figures, etc.;
namely, data that are written to an auxiliary file and read
in later. Other places are those data that might appear
in head- or footlines. Section headers and figure captions
are the most prominent examples; there’s a complete list
in Lamport’s book (see question 22).

What’s going on really, behind the scenes? The com-
mands in the moving arguments are already expanded
to their internal structure during the process of saving.
Sometimes this expansion results in invalid TEX code
when processed again. “\protect\cmd” tells EXTEX to
save \cmd as \cmd, without expansion.

What is a ‘fragile command’? It’s a command that
expands into illegal TEX code during the save process.

What is a ‘robust command’? It’s a command that
expands into legal TEX code during the save process.

No-one (of course) likes this situation; the KTEX3
team have removed the need for protection of some things
in the production of KTEX 2¢, but the techniques avail-
able to them within current IMTEX mean that this is an
expensive exercise. It remains a long-term aim of the
team to remove all need for these things.

What’s the reason for ‘protection’?

193 \edef does not work with \protect

Robust KTEX commands are either “naturally robust” —
meaning that they never need \protect, or “self-
protected” — meaning that they have \protect built

64

in to their definition in some way. Self-protected com-
mands are robust only in a context where the \protect
mechanism is properly handled. The body of an \edef
definition doesn’t handle \protect properly, since \edef
is a TEX primitive rather than a BTEX command.

This problem is resolved by a KTEX internal com-
mand \protected@edef, which does the job of \edef
while keeping the \protect mechanism working. There’s
a corresponding \protected@xdef which does the job of
\xdef.

Of course, these commands need to be tended care-
fully, since they’re internal: see question 191.

194 Optional arguments like \section

Optional arguments, in macros defined using
\newcommand, don’t quite work like the optional argu-
ment to \section. The default value of \section’s op-
tional argument is the value of the mandatory argument,
but \newcommand requires that you ‘know’ the value of
the default beforehand.

The requisite trick is to use a macro in the optional
argument:

\newcommand\thing[2] [\DefaultOptl{%
\def\DefaultOpt{#2}%

A

}

195 Making labels from a counter

Suppose we have a ITEX counter, which we’ve defined

with \newcounter{foo}. We can increment the value

of the counter by \addtocounter{foo}{1}, but that’s

pretty clunky for an operation that happens so often
. so there’s a command \stepcounter{foo} that does

this special case of increasing-by-one.

There’s an internal EXTEX variable, the “current la-
bel”, that remembers the last ‘labellable’ thing that
KTEX has processed. You could (if you were to insist)
set that value by the relevant TEX command (having
taken the necessary precautions to ensure that the in-
ternal command worked) — but it’s not necessary. If,
instead of either of the stepping methods above, you say
\refstepcounter{foo}, the internal variable is set to
the new value, and (until something else comes along),
\label will refer to the counter.

196 Finding if you’re on an odd or an even page

Question 219 discusses the issue of getting \marginpar
commands to put their output in the correct margin of
two-sided documents. This is an example of the general
problem of knowing where a particular bit of text lies: the
output routine is asynchronous, and (I8)TEX will usually
process quite a bit of the “next” page before deciding to
output any page. As a result, the page counter (known
internally in KTEX as \c@page) is normally only reliable
when you’re actually in the output routine.

The solution is to use some version of the \label
mechanism to determine which side of the page you're on;
the value of the page counter that appears in a \pageref
command has been inserted in the course of the output
routine, and is therefore safe.

However, \pageref itself isn’t reliable:
hope that

one might

\ifthenelse{\isodd{\pageref{fool}}}{odd}{even}

would do the necessary, but both the babel and hyperref
packages have been known to interfere with the output of
\pageref; be careful!

The chngpage package needs to provide this function-
ality for its own use, and therefore provides a command
\checkoddpage; this sets a private-use label, and the
page reference part of that label is then examined (in a
hyperref-safe way) to set a conditional \ifcpoddpage true
if the command was issued on an odd page. Of course,
the \label contributes to BTEX’s “Rerun to get cross-
references right” error messages. ..

chngpage.sty: macros/latex/contrib/supported/
misc/chngpage.sty

197

By default, when a label is created, it takes on the ap-
pearance of the counter labelled: specifically, it is set to
\the<counter> — what would be used if you asked to
typeset the counter in your text. This isn’t always what
you need: for example, if you have nested enumerated
lists with the outer numbered and the inner labelled with
letters, one might expect to want to refer to items in
the inner list as “2(c)”. (Remember, you can change the
structure of list items — see question 150.) The change
is of course possible by explicit labelling of the parent
and using that label to construct the typeset result —
something like
\ref{parent-item}(\ref{child-item})

which would be both tedious and error-prone. What’s
more, it would be undesirable, since you would be con-
structing a visual representation which is inflexible (you
couldn’t change all the references to elements of a list at
one fell swoop).

ETEX in fact has a label-formatting command built
into every label definition; by default it’s null, but it’s
available for the user to program. For any label (counter)
there’s a ITEX internal command \p@<counter>; for ex-
ample, a label definition on an inner list item is done (in
effect) using the command \p@enumii{\theenumii}. So
to change the labels on all inner lists, put the following
patch in your preamble:

\makeatletter
\renewcommand{\p@enumii} [1]{\theenumi (#1)}
\makeatother
The analagous change works for any counter that gets
used in a \label command.

How to change the format of labels

198 Comparing the “job name”

The token \jobname amusingly produces a sequence of
characters whose category code is 12 (‘other’), regard-
less of what the characters actually are. Since one in-
evitably has to compare a macro with the contents of an-
other macro (using \ifx, somewhere) one needs to create
a macro whose expansion looks the same as the expansion
of \jobname. We find we can do this with \meaning, if
we strip the “\show command” prefix.
The full command looks like:

\def\StripPrefix#1>{}
\def\jobis#1{FF\fi

65

\def\predicate{#11}/
\edef\predicate{\expandafter\StripPrefix
\meaning\predicatel},
\edef\job{\jobname}%
\ifx\job\predicate
}

And it’s used as:

\if\jobis{mainfilel},

\message{YES}/,
\else

\message{NO}/
\fi
Note that the command \StripPrefix need not be de-
fined if you're using XTEX — there’s already an internal
command (see question 191) \strip@prefix that you can
use.

199 Is the argument a number?

TEX’s own lexical analysis doesn’t offer the macro pro-
grammer terribly much support: while category codes
will distinguish letters (or what TEX currently thinks of
as letters) from everything else, there’s no support for
analysing numbers.

The simple-minded solution is to compare numeric
characters with the characters of the argument, one by
one, by a sequence of direct tests, and to declare the ar-
gument “not a number” if any character fails all compar-
isons:

\ifx1#1
\else\ifx2#1

\else\ifx9#1

\else\isanumfalse

\filfi...\fi

which one would then use in a tail-recursing macro to
gobble an argument. One could do slightly better by as-
suming (pretty safely) that the digits’ character codes are
consecutive:

\ifnum‘#1<‘0 \isanumfalse
\else\ifnum‘#1>‘9 \isanumfalse
\fi

\fi
again used in tail-recursion. However, these forms aren’t
very satisfactory: getting the recursion “right” is trou-
blesome (it has a tendency to gobble spaces in the ar-
gument), and in any case TEX itself has mechanisms for
reading numbers, and it would be nice to use them.

Donald Arseneau’s cite package offers the following
test for an argument being a strictly positive integer:

\def\IsPositive#1{}
TT\fi
\ifcat_\ifnumO<O0#1 _\else A\fi
}
which can be adapted to a test for a non-negative integer
thus:

\def\IsNonNegative{’
\ifcat_\ifnum9<1#1 _\else A\fi
}

or a test for any integer:

\def\gobble#1{}
\def\gobbleminus{\futurelet\temp\gobm}
\def\gobm{\ifx-\temp\expandafter\gobble\fi}
\def\IsInteger#1{/

TT\fi

\ifcat_\ifnum9<i\gobbleminus#1 _\else A\fi
}

but this surely stretches the technique further than is rea-
sonable.

If we don’t care about the sign, we can use TEX to
remove the entire number (sign and all) from the input
stream, and then look at what’s left:

\def\testnum#l{\afterassignment\testresult
\count255=#1 \end}

\def\testresult#1\end{\ifx\end#1\end}

\def\IsInteger#1{TT\fi \testnum{#1}}

(which technique is due to David Kastrup). In a later
thread on the same topic, Michael Downes offered:

\def\IsInteger#1{/

TT\fi

\begingroup \lccode‘\-=\0 \lccode‘+=‘\0
\lccode‘\1=°\0 \lccode‘\2=°\0 \lccode‘\3=\0
\lccode‘\4=‘\0 \lccode‘\5=‘\0 \lccode‘\6=\0
\lccode‘\7=‘\0 \lccode‘\8=‘\0 \lccode‘\9=‘\0

\lowercase{\endgroup
\expandafter\ifx\expandafter\delimiter
\romannumeralO\string#1}\delimiter

3

which relies on \romannumeral producing an empty re-
sult if its argument is zero.

All the complete functions above are designed to be
used in TEX conditionals written “naturally” — for ex-
ample:

\if\IsInteger{<subject of test>}}
<deal with integer>Y

\else
<deal with non-integer>,

\fi

200 Defining macros within macros

The way to think of this is that ## gets replaced by # in
just the same way that #1 gets replaced by ‘whatever is
the first argument’.
So if you define a macro and use it as:

\def\a#1{+++#1+++#1+++#1+++; \a{b}
the macro expansion produces ‘++-+b++-+b+++b+++,
which people find normal. However, if we now replace
part of the macro:

\def\a#1{+++#1+++\def\x #1{xxx#1}}
\a{b} will expand to ‘++-+b++-+\def\x b{xxxb}'.
This defines \x to be a macro delimited by b, and tak-
ing no arguments, which people may find strange, even
though it is just a specialisation of the example above. If
you want \a to define \x to be a macro with one argu-
ment, you need to write:

\def\a#t1{+++#1+++\def\x ##1{xxx##1}}

and \a{b} will expand to ‘+++b+++\def\x #1{xxx#1}’,
because #1 gets replaced by ‘b’ and ## gets replaced by
#.

66

To nest a definition inside a definition inside a defini-
tion then you need ####1, as at each stage ## is replaced
by #. At the next level you need 8 #s each time, and so
on.

201

It’s very easy to write macros that produce space in the
typeset output where it’s neither desired nor expected.
Spaces introduced by macros are particularly insidious
because they don’t amalgamate with spaces around the
macro (in the way that consecutive spaces that you type
do), so your output can have a single bloated space that
proves to be made up of two or even more spaces that
haven’t amalgamated. And of course, your output can
also have a space where none was wanted at all.

Spaces are produced, inside a macro as elsewhere,
by space or tab characters, or by end-of-line characters.
There are two basic rules to remember when writing a
macro: first, the rules for ignoring spaces when you're
typing macros are just the same as the rules that apply
when you’re typing ordinary text, and second, rules for
ignoring spaces do not apply to spaces produced while a
macro is being obeyed (“expanded”).

Spaces are ignored in vertical mode (between para-
graphs), at the beginning of a line, and after a command
name. Since sequences of spaces are collapsed into one, it
‘feels as if’ spaces are ignored if they follow another space.
Space can have syntactic meaning after certain sorts of
non-braced arguments (e.g., count and dimen variable as-
signments in Plain TEX) and after certain control words
(e.g., in \hbox to, so again we have instances where it
‘feels as if’ spaces are being ignored when they’re merely
working quietly for their living.

Consider the following macro, fairly faithfully adapted
from one that appeared on comp.text.tex:
\newcommand{\stline}[1]

{ \bigskip \makebox[2cm]{ \textbf{#1} } }
(the original appeared on a single line: it’s wrapped here
to fit in the printed FAQ’s narrow columns).
The macro definition contains five spaces:

Spaces in macros

e after the opening { of the macro body; this space
will be ignored, not because “because the macro ap-
pears at the start of a line”, but rather because the
macro was designed to operate between paragraphs

e after \bigskip; this space will be ignored (while the
macro is being defined) because it follows a com-
mand name

e after the { of the mandatory argument of \makebox;
even though this space will inevitably appear at the
start of an output line, it will not be ignored

e after the } closing the argument of \textbf; this
space will not be ignored, but may be overlooked if
the argument is well within the 2cm allowed for it

e after the } closing the mandatory argument of
\makebox; this space will not be ignored, and will
appear in the argument

The original author of the macro had been concerned that
the starts of his lines with this macro in them were not
at the left margin, and that the text appearing after the
macro wasn’t always properly aligned. These problems

arose from the space at the start of the mandatory ar-
gument of \makebox and the space immediately after the
same argument. He had written his macro in that way to
emphasise the meaning of its various parts; unfortunately
the meaning was rather lost in the problems the macro
caused.

The principal technique for suppressing spaces is the
use of % characters: everything after a % is ignored, even
the end of line itself (so that not even the end of line can
contribute an unwanted space). The secondary technique
is to ensure that the end of line is preceded by a command
name (since the end of line behaves like a space, it will
be ignored following a command name). Thus the above
command would be written (by an experienced program-
mer with a similar eye to emphasising the structure):

\newcommand{\stline} [1]1{%

\bigskip

\makebox [2cm] {%

\textbf{#1}\relax

%
}
Care has been taken to ensure that every space in the
revised definition is ignored, so none appears in the out-
put. The revised definition takes the “belt and braces”
approach, explicitly dealing with every line ending (al-
though, as noted above, a space introduced at the end
of the first line of the macro would have been ignored in
actual use of the macro. This is the best technique, in
fact — it’s easier to blindly suppress spaces than to anal-
yse at every point whether you actually need to. Three
techniques were used to suppress spaces:

e placing a % character at the end of a line (as in the
1st, 3rd and 5th lines),

e ending a line ‘naturally’” with a control sequence, as
in line 2, and

e ending a line with an ‘artificial’ control sequence, as
in line 4; the control sequence in this case (\relax)
is a no-op in many circumstances (as here), but this
usage is deprecated — a % character would have
been better.

Beware of the (common) temptation to place a space be-
fore a ¥, character: if you do this you might as well omit
the % altogether.

In “real life”, of course, the spaces that appear in
macros are far more cryptic than those in the example
above. The most common spaces arise from unprotected
line ends, and this is an error that occasionally appears
even in macros written by the most accomplished pro-
grammers.

T Things are Going Wrong. ..

T.1 Getting things to fit
202 Enlarging TgX

The TEX error message ‘capacity exceeded’ covers a mul-
titude of problems. What has been exhausted is listed in
brackets after the error message itself, as in:

! TeX capacity exceeded, sorry

67

[main memory size=263001].

Most of the time this error can be fixed without enlarging
TEX. The most common causes are unmatched braces,
extra-long lines, and poorly-written macros. Extra-long
lines are often introduced when files are transferred in-
correctly between operating systems, and line-endings are
not preserved properly (the tell-tale sign of an extra-long
line error is the complaint that the ‘buf_size’ has over-
flowed).

If you really need to extend your TEX’s capacity, the
proper method depends on your installation. There is no
need (with modern TEX implementations) to change the
defaults in Knuth’s WEB source; but if you do need to do
so, use a change file to modify the values set in module
11, recompile your TEX and regenerate all format files.

Modern implementations allow the sizes of the various
bits of TEX’s memory to be changed semi-dynamically.
Some (such as emTEX) allow the memory parameters
to be changed in command-line switches when TEX is
started; most frequently, a configuration file is read which
specifies the size of the memory. On web2c-based systems,
this file is called texmf.cnf: see the documentation that
comes with the distribution for other implementations.
Almost invariably, after such a change, the format files
need to be regenerated after changing the memory pa-
rameters.

203 Why can’t I load P[CTEX?

PICIEX is a resource hog; fortunately, most modern TEX
implementations offer generous amounts of space, and
most modern computers are pretty fast, so users aren’t
too badly affected by its performance.

However, P[CTEX has the further unfortunate ten-
dency to fill up TEX’s fixed-size arrays — notably the
array of 256 ‘dimension’ registers. This is a particular
problem when you're using pictex.sty with ETEX and
some other packages that also need dimension registers.
When this happens, you will see the TEX error message:

! No room for a new \dimen.

There is nothing that can directly be done about this
error: you can’t extend the number of available \dimen
registers without extending TgX itself. (e-TEX and 2 —
see questions 237 and 236 respectively — both do this, as
does MicroPress Inc’s VIEX — see question 55.) Since
you can’t (ordinarily) extend TgX, you need to change
PICTEX; unfortunately P[CTEX’s author is no longer ac-
tive in the TEX world, so one must resort to patching.
There are two solutions available.

The ConTEXt module m-pictex.tex (for Plain TEX
and variants) or the corresponding BTEX m-picter pack-
age provide an ingenious solution to the problem based
on hacking the code of \newdimen itself.

Alternatively, Andreas Schell’s pictezwd and related
packages replace PICTEX with a version that uses 33 fewer
\dimen registers; so use pictezwd in place of pictezx (either
as a BTEX package, or as a file to read into Plain TEX).

And how does one use PI[CTEX anyway, given that the
manual is so hard to come by (see question 32)? For-
tunately for MS-DOS and Windows users, the MathsPic
system may be used to translate a somewhat different lan-
guage into P[CTEX commands; and the MathsPic manual

is free (and part of the distribution). MathsPic is written
in Basic; a version written in Perl is under development,
and should be available soon.

m-pictez.sty: Distributed as part of
macros/context/cont-tmf.zip

m-pictez. tex: Distributed as part of
macros/context/cont-tmf .zip

MathsPic: graphics/pictex/mathspic

pictezwd. sty: Distributed as part of
graphics/pictex/addon

T.2 Making things stay where you want
them

204 Moving tables and figures in BKTgX

Tables and figures have a tendency to surprise, by float-
ing away from where they were specified to appear. This
is in fact perfectly ordinary document design; any pro-
fessional typesetting package will float figures and tables
to where they’ll fit without violating the certain typo-
graphic rules. Even if you use the placement specifier h
for ‘here’; the figure or table will not be printed ‘here’
if doing so would break the rules; the rules themselves
are pretty simple, and are given on page 198, section C.9
of the WTEX manual. In the worst case, INTEX’s rules
can cause the floating items to pile up to the extent that
you get an error message saying “Too many unprocessed
floats” (see question 231). What follows is a simple check-
list of things to do to solve these problems (the checklist
talks throughout about figures, but applies equally well
to tables, or to “non-standard” floats defined by the float
or other packages).

e Do your figures need to float at all? If not, consider
the [H] placement option offered by the float pack-
age: figures with this placement are made up to look
as if they’re floating, but they don’t in fact float.
Beware outstanding floats, though: the \caption
commands are numbered in the order they appear
in the document, and a [H] float can ‘overtake’ a
float that hasn’t yet been placed, so that figures
numbers get out of order.

e Are the placement parameters on your figures right?
The default (tbp) is reasonable, but you can reason-
ably change it (for example, to add an h). What-
ever you do, don’t omit the ‘p’: doing so could cause
KTEX to believe that if you can’t have your figure
here, you don’t want it anywhere. (IWTEX does try
hard to avoid being confused in this way. ..)

o INTEX’s own float placement parameters could be
preventing placements that seem entirely “reason-
able” to you — they’re notoriously rather conser-
vative. To encourage IXTEX not to move your fig-
ure, you need to loosen its demands. (The most
important ones are the ratio of text to float on a
given page, but it’s sensible to have a fixed set that
changes the whole lot, to meet every eventuality.)
\renewcommand{\topfraction}{.85}
\renewcommand{\bottomfraction}{.7}
\renewcommand{\textfraction}{.15}
\renewcommand{\floatpagefraction}{.66}

68

\renewcommand{\dbltopfraction}{.66}
\renewcommand{\dblfloatpagefraction}{.66}
\setcounter{topnumber}{9}
\setcounter{bottomnumber}{9}
\setcounter{totalnumber}{20}
\setcounter{dbltopnumber}{9}

The meanings of these parameters are described on
pages 199200, section C.9 of the KTEX manual.

e Are there places in your document where you could
‘naturally’ put a \clearpage command? If so, do:
the backlog of floats is cleared after a \clearpage.
(Note that the \chapter command in the stan-
dard book and report classes implicitly executes
\clearpage, so you can’t float past the end of a
chapter.)

e Try the placeins package: it defines a
\FloatBarrier command beyond which floats may
not pass. A package option allows you to declare
that floats may not pass a \section command,
but you can place \FloatBarriers wherever you
choose.

e Have a look at the IXTEX 2. afterpage package.
Its documentation gives as an example the idea of
putting \clearpage after the current page (where
it will clear the backlog, but not cause an ugly gap
in your text), but also admits that the package is
somewhat fragile. Use it as a last resort if the other
two possibilities below don’t help.

e If you would actually like great blocks of floats at
the end of each of your chapters, try the morefloats
package; this ‘simply’ increases the number of float-
ing inserts that KTEX can handle at one time
(from 18 to 36).

e If you actually wanted all your figures to float to the
end (e.g., for submitting a draft copy of a paper),
don’t rely on BTEX’s mechanism: get the endfloat
package to do the job for you.

afterpage.sty: Distributed as part of
macros/latex/required/tools

endfloat.sty: macros/latex/contrib/supported/
endfloat

float.sty: macros/latex/contrib/supported/float

morefloats.sty: macros/latex/contrib/other/
misc/morefloats.sty

placeins.sty: macros/latex/contrib/other/misc/
placeins.sty

205 Underlined text won’t break

Knuth made no provision for underlining text: he took the
view that underlining is not a typesetting operation, but
rather one that provides emphasis on typewriters, which
typically offer but one typeface. The corresponding tech-
nique in typeset text is to switch from upright to italic
text (or vice-versa): the IWTEX command \emph does just
that to its argument.

Nevertheless, typographically illiterate people (such as
those that specify double-spaced thesis styles — see ques-
tion 127) continue to require underlining of us, so WTEX

as distributed defines an \underline command that ap-
plies the mathematical ‘underbar’ operation to text. This
technique is not entirely satisfactory, however: the text
gets stuck into a box, and won’t break at line end.

Two packages are available that solve this problem.
The ulem package redefines the \emph command to un-
derline its argument; the underlined text thus produced
behaves as ordinary emphasised text, and will break over
the end of a line. (The package is capable of other peculiar
effects, too: read its documentation, contained within the
file itself.) The soul package defines an \ul command (af-
ter which the package is, in part, named) that underlines
running text.

ulem.sty: macros/latex/contrib/other/misc/ulem.
sty

soul.sty: macros/latex/contrib/supported/soul

206 Controlling widows and orphans

Widows (the last line of a paragraph at the start of a
page) and orphans (the first line of paragraph at the end
of a page) interrupt the reader’s flow, and are generally
considered “bad form”; (I2)TEX takes some precautions
to avoid them, but completely automatic prevention is
often impossible. If you are typesetting your own text,
consider whether you can bring yourself to change the
wording slightly so that the page break will fall differ-
ently.

The page maker, when forming a page, takes account
of \widowpenalty and \clubpenalty (which relates to
orphans!). These penalties are usually set to the moder-
ate value of 150; this offers mild discouragement of bad
breaks. You can increase the values by saying (for ex-
ample) \widowpenalty=500; however, vertical lists (such
as pages are made of) typically have rather little stretch-
ability or shrinkability, so if the page maker has to bal-
ance the effect of stretching the unstretchable and being
penalised, the penalty will seldom win. This dichotomy
can be avoided by allowing the pagemaker to run pages
short, by using the \raggedbottom directive; however,
many publishers insist on the default \flushbottom; it
is seldom acceptable to introduce stretchability into the
vertical list, except at points (such as section headings)
where the document design explicitly permits it.

Once you’ve exhausted the automatic measures, and
have a final draft you want to “polish”, you have to in-
dulge in manual measures. To get rid of an orphan is
simple: precede the paragraph with \clearpage and the
paragraph can’t start in the wrong place.

Getting rid of a widow can be more tricky. If the
paragraph is a long one, it may be possible to set it
‘tight’: say \looseness=-1 immediately after the last
word of the paragraph. If that doesn’t work, try adjusting
the page size: \enlargethispage{\baselineskip} may
do the job, and get the whole paragraph on one page.
Reducing the size of the page by \enlargethispage
{-\baselineskip} may produce a (more-or-less) accept-
able “two-line widow”. (Note: \looseness=1, increas-
ing the line length by one, seldom seems to work — the
looser paragraph typically has a one-word final line, which
doesn’t look much better than the straight widow.)

69

T.3 Things have “gone away”
207 Old ETEX font references such as \tenrm

ETEX 2.09 defined a large set of commands for access to
the fonts that it had built in to itself. For example, various
flavours of cmr could be found as \fivrm, \sixrm, \sevrm,
\egtrm, \ninrm, \tenrm, \elvrm, \twlrm, \frtnrm,
\svtnrm, \twtyrm and \twfvrm. These commands were
never documented, but certain packages nevertheless used
them to achieve effects they needed.

Since the commands weren’t public, they weren’t in-
cluded in ETEX2¢; to use the unconverted KTEX2.09
packages under IETEX 2¢, you need also to include the
rawfonts package (which is part of the BTEX 2¢ distribu-
tion).

208 Missing symbol commands

You're processing an old document, and some symbol
commands such as \Box and \1hd appear no longer to
exist. These commands were present in the core of
ETEX 2.09, but are not in current KTEX. They are avail-
able in the latexsym package (which is part of the WTEX
distribution), and in the amsfonts package (which is part
of the AMS distribution, and requires AMS symbol fonts).

amsfonts.sty: fonts/amsfonts/latex

AMS symbol fonts: fonts/amsfonts/sources/symbols

209 Where are the msx and msy fonts?

The msx and msy fonts were designed by the Ameri-
can Mathematical Society in the very early days of TEX,
for use in typesetting papers for mathematical journals.
They were designed using the ‘old’ METAFONT, which
wasn’t portable and is no longer available; for a long time
they were only available in 300dpi versions which only
imperfectly matched modern printers. The AMS has now
redesigned the fonts, using the current version of META-
FONT, and the new versions are called the msa and msb
families.

Nevertheless, msx and msy continue to turn up to
plague us. There are, of course, still sites that haven’t
got around to upgrading; but, even if everyone upgraded,
there would still be the problem of old documents that
specify them.

If you have a .tex source that requests msx and msy,
the best technique is to edit it so that it requests msa and
msb (you only need to change the single letter in the font
names).

If you have a DVI file that requests the fonts, there is
a package of virtual fonts (see question 37) to map the
old to the new series.

msa and msb fonts: fonts/amsfonts/sources/
symbols

virutal font set: fonts/vi-files/msx2msa

210 Where are the am fonts?

One still occasionally comes across a request for the am
series of fonts. The initials stood for ‘Almost [Computer]

Modern’, and they were the predecessors of the Com-
puter Modern fonts that we all know and love (or hate)”.
There’s not a lot one can do with these fonts; they are
(as their name implies) almost (but not quite) the same
as the cm series; if you're faced with a document that re-
quests them, all you can reasonably do is to edit the doc-
ument. The appearance of DVI files that request them
is sufficiently rare that no-one has undertaken the mam-
moth task of creating a translation of them by means of
virtual fonts; however, most drivers let you have a con-
figuration file in which you can specify font substitutions.
If you specify that every am font should be replaced by
its corresponding cm font, the output should be almost
correct.

U Why does it do that?

U.1 Common errors
211 ITgX gets cross-references wrong

Sometimes, however many times you run KTEX, the cross-
references are just wrong. Remember that the \label
command must come after the \caption command, or
be part of it. For example,

\begin{figure} \begin{figure}
\caption{A Figure} or \caption{A Figure}
\label{fig} \label{fig}}
\end{figure} \end{figure}

212 Start of line goes awry

This answer concerns two sorts of problems: errors of the
form

! Missing number, treated as zero.
<to be read again>
g
<*> [grump]
and those where a single asterisk at the start of a line
mysteriously fails to appear in the output.

Both problems arise because \\ takes optional argu-
ments. The command * means “break the line here,
and inhibit page break following the line break”; the com-
mand \\ [{dimen)] means “break the line here and add
(dimen) extra vertical space afterwards”.

So why does \\ get confused by these things at the
start of a line? It’s looking for the first non-blank thing,
and in the test it uses ignores the end of the line in your
input text.

The solution is to enclose the stuff at the start of the
new line in braces:

{\ttfamily

/* C-language comment\\

{[grumpl} I don’t like this format\\

{*}/
}
(The above text derives from an actual post to comp.
text.tex; this particular bit of typesetting could plainly
also be done using the verbatim environment.)

The problem also appears in maths mode, in arrays
and so on. In this case, large-scale bracketing of things is
not a good idea; the TEX primitive \relax (which does
nothing except to block searches of this nature) may be
used. From another comp.text.tex example:
\begin{eqnarry}

[a]l &=& b \\

\relax[a] &=& b
\end{eqgnarry}

213 Why doesn’t \verb work within...?

The ITEX verbatim commands work by changing cate-
gory codes. Knuth says of this sort of thing “Some care
is needed to get the timing right...”, since once the cat-
egory code has been assigned to a character, it doesn’t
change. So \verb has to assume that it is getting the
first look at its parameter text; if it isn’t, TEX has al-
ready assigned category codes so that \verb doesn’t have
a chance. For example:

\verb+\error+
will work (typesetting ‘\error’), but

\newcommand{\unbrace}[1]{#1}
\unbrace{\verb+\error+}
will not (it will attempt to execute \error). Other errors
one may encounter are ‘\verb ended by end of line’, or
even ‘\verb illegal in command argument’.

This is why the IATEX book insists that verbatim com-
mands must not appear in the argument of any other com-
mand; they aren’t just fragile, they’'re quite unusable in
any command parameter, regardless of \protection (see
question 192).

The first question to ask yourself is: “is \verb actually
necessary?”.

o If \texttt{your teztl} produces the same result
as \verb+your tezt+, then there’s no need of
\verb in the first place.

e If you're using \verb to typeset a URL or email
address or the like, then the \url command from
the url package will help: it doesn’t suffer from the
problems of \verb.

e If you're putting \verb into the argument of a box-
ing command (such as \fbox), consider using the
1lrbox environment:

\newsavebox{\mybox}

\begin{lrbox}{\mybox}
\verb!VerbatimStuff!

\end{1lrbox}

\fbox{\usebox{\mybox}}

Otherwise, there are three partial solutions to the
problem.

e The fancyvrb package defines a command
\VerbatimFootnotes, which redefines the
\footnotetext (and hence the \footnote) com-
mands in such a way that you can include \verb
commands in its argument. This approach could

"The fonts acquired their label ‘Almost’ following the realisation that their first implementation in METAFONT79 still wasn’t quite right;

Knuth’s original intention had been that they were the final answer

70

in principle be extended to the arguments of other
commands, but it can clash with other packages:
for example, \VerbatimFootnotes interacts poorly
with the para option to the footmisc package.

e The fancyvrb package defines a command
\SaveVerb, with a corresponding \UseVerb com-
mand, that allow you to save and then to reuse the
content of its argument; for details of this extremely
powerful facility, see the package documentation.
Rather simpler is the verbdef package, which defines
a (robust) command which expands to the verbatim
argument given.

e If you have a single character that is giving trouble
(in its absence you could simply use \texttt), con-
sider using \string. \texttt{my\string name}
typesets the same as \verb+my_name+, and will
work in the argument of a command. It won’t, how-
ever, work in a moving argument, and no amount
of \protection (see question 192) will make it work
in such a case.

fancyurb.sty: macros/latex/contrib/supported/
fancyvrb

url.sty: macros/latex/contrib/other/misc/url.
sty

verbdef.sty: macros/latex/contrib/other/misc/
verbdef.sty

214 No line here to end

The error
! LaTeX Error: There’s no line here to end.

See the LaTeX manual or LaTeX Companion
for explanation.

comes in reaction to you giving KTEX a \\ command at
a time when it’s not expecting it. The commonest case is
where you’ve decided you want the label of a list item to
be on a line of its own, so you've written (for example):

\begin{description}

\item[Very long labell] \\

Text...
\end{description}

\\ is actually a rather bad command to use in this case
(even if it worked), since it would force the ‘paragraph’
that’s made up of the text of the item to terminate a line
which has nothing on it but the label. This would lead
to an “Underfull \hbox” warning message (usually with
‘infinite’ badness of 10000); while this message doesn’t
do any actual harm other than slowing down your KTEX
run, any message that doesn’t convey any information
distracts for no useful purpose.

The proper solution to the problem is to write a
new sort of description environment, that does just
what you're after. (The IATEX Companion — see ques-
tion 22 — offers a rather wide selection of variants of these
things.)

The quick-and-easy solution, which avoids the warn-
ing, is to write:

\begin{description}
\item[Very long label] \hspacex{\filll} \\

71

Text...
\end{description}

which fills out the under-full line before forcing its closure.
The expdlist package provides the same functionality with
its \breaklabel command, and mdwlist provides it via
its \desclabelstyle command.

The other common occasion for the message is when
you're using the center (or flushleft or flushright)
environment, and have decided you need extra separation
between lines in the environment:

\begin{center}

First (heading) line\\

AR

body of the centred text...
\end{center}

The solution here is plain: use the \\ command in the
way it’s supposed to be used, to provide more than just
a single line break space. \\ takes an optional argument,
which specifies how much extra space to add; the required
effect in the text above can be had by saying:

\begin{center}
First (heading) line\\[\baselineskip]
body of the centred text...
\end{center}

ezpdlist.sty: macros/latex/contrib/supported/
expdlist

mdwlist.sty: Distributed as part of
macros/latex/contrib/supported/mdwtools

U.2 Common misunderstandings

215 What’s going on in my \include
commands?

The original BTEX provided the \include command
to address the problem of long documents: with the
relatively slow computers of the time, the companion
\includeonly facility was a boon. With the vast in-
crease in computer speed, \includeonly is less valuable
(though it still has its place in some very large projects).
Nevertheless, the facility is retained in current IXTEX, and
causes some confusion to those who misunderstand it.

In order for \includeonly to work, \include makes
a separate .aux file for each included file, and makes
a ‘checkpoint’ of important parameters (such as page,
figure, table and footnote numbers); as a direct result,
it must clear the current page both before and after
the \include command. What’s more, this mechanism
doesn’t work if a \include command appears in a file
that was \included itself: I4TEX diagnoses this as an
error.

So, we can now answer the two commonest questions
about \include:

e Why does KTEX throw a page before and after
\include commands?
Answer: because it has to. If you don’t like it, re-
place the \include command with \input — you
won’t be able to use \includeonly any more, but
you probably don’t need it anyway, so don’t worry.

e Why can’t I nest \included files? — I always used
to be able to under KTEX 2.09.
Answer: in fact, you couldn’t, even under
ETEX 2.09, but the failure wasn’t diagnosed. How-
ever, since you were happy with the behaviour under
ETEX 2.09, replace the \include commands with
\input commands (with \clearpage as appropri-
ate).

216 Why does it ignore paragraph parameters?

When TgX is laying out text, it doesn’t work from word
to word, or from line to line; the smallest complete unit it
formats is the paragraph. The paragraph is laid down in
a buffer, as it appears, and isn’t touched further until the
end-paragraph marker is processed. It’s at this point that
the paragraph parameters have effect; and it’s because of
this sequence that one often makes mistakes that lead to
the paragraph parameters not doing what one would have
hoped (or expected).
Consider the following sequence of IXTEX:

{\raggedright % declaration for ragged text
Here’s text to be ranged left in our output,
but it’s the only such paragraph, so we now
end the group.}

Here’s more that needn’t be ragged...

TEX will open a group, and set the ragged-setting pa-
rameters within that group; it will then save a couple of
sentences of text and close the group (thus restoring the
previous value of the ragged-setting parameters). Then
it encounters a blank line, which it knows to treat as a
\par token, so it typesets the two sentences; but because
the enclosing group has now been closed, the parameter
settings have been lost, and the paragraph will be typeset
normally.

The solution is simple: close the paragraph inside the
group, so that the setting parameters remain in place. An
appropriate way of doing that is to replace the last three
lines above with:

end the group.\par}

Here’s more that needn’t be ragged...
In this way, the paragraph is completed while the setting
parameters are still in force within the enclosing group.

Another alternative is to define an environment that
does the appropriate job for you. For the above example,
ETEX already defines an appropriate one:
\begin{flushleft}

Here’s text to be ranged left...
\end{flushleft}

217 Case-changing oddities

TEX provides two primitive commands \uppercase and
\lowercase to change the case of text; they’re not much
used, but are capable creating confusion.

The two commands do not expand the text that is
their parameter — the result of \uppercase{abc} is
‘ABC’, but \uppercase{\abc} is always ‘\abc’, whatever
the meaning of \abc. The commands are simply inter-
preting a table of equivalences between upper- and lower-
case characters. They have (for example) no mathemati-
cal sense, and

72

\uppercase{About $y=f (x)$}
will produce
ABOUT $Y=F(X)$
which is probably not what is wanted.

In addition, \uppercase and \lowercase do not deal
very well with non-American characters, for example
\uppercase{\ae} is the same as \ae.

ETEX provides commands \MakeUppercase and
\MakeLowercase which fixes the latter problem. These
commands are used in the standard classes to produce
upper case running heads for chapters and sections.

Unfortunately \MakeUppercase and \MakeLowercase
do not solve the other problems with \uppercase, so for
example a section title containing \begin{tabular} ...
\end{tabular} will produce a running head containing
\begin{TABULAR}. The simplest solution to this problem
is using a user-defined command, for example:

\newcommand{\mytable}{\begin{tabular}...
\end{tabular}}

\section{A section title \protect\mytable{}
with a table}

Note that \mytable has to be protected, other-
wise it will be expanded and made upper case; you
can achieve the same result by declaring it with
\DeclareRobustCommand, in which case the \protect
won’t be necessary.

David Carlisle’s textcase package addresses many of
these problems in a transparent way. It defines com-
mands \MakeTextUppercase and \MakeTextLowercase
which do upper- or lowercase, with the fancier features
of the BTEX standard \Make*-commands but without
the problems mentioned above. Load the package with
\usepackage [overload] {textcase}, and it will redefine
the standard commands, so that section headings and the
like don’t produce broken page headings.

textcase.sty: Distributed as part of
macros/latex/contrib/supported/carlisle

218 Why does BTEX split footnotes across

pages?

ITEX splits footnotes when it can think of nothing better
to do. Typically, when this happens, the footnote mark
is at the bottom of the page, and the complete footnote
would overfill the page. IXTEX could try to salvage this
problem by making the page short of both the footnote
and the line with the footnote mark, but its priorities told
it that splitting the footnote would be preferable.

As always, the best solution is to change your text so
that the problem doesn’t occur in the first place. Con-
sider whether the text that bears the footnote could move
earlier in the current page, or on to the next page.

If this isn’t possible, you might want to change
ETEX’s perception of its priorities: they’re controlled by
\interfootnotelinepenalty — the larger it is, the less
willing IATEX is to split footnotes.

Setting

\interfootnotelinepenalty=10000

inhibits split footnotes altogether, which will cause
‘Underfull \vbox’ messages unless you also specify

\raggedbottom. The default value of the penalty is 100,
which is rather mild.

An alternative technique is to juggle with the actual
size of the pages. \enlargethispage changes the size of
the current page by its argument (for example, you might
say \enlargethispage{\baselineskip} to add a single
line to the page, but you can use any ordinary TEX length
such as 15mm or -20pt as argument). Reducing the size of
the current page could force the offending text to the next
page; increasing the size of the page may allow the foot-
note to be included in its entirety. It may be necessary to
change the size of more than one page.

219 Getting \marginpar on the right side

In twoside documents, BTEX makes sterling attempts to
put \marginpars in the correct margin (the outer or the
gutter margin, according to the user’s command). How-
ever, a booby-trap arises because TEX runs its page maker
asynchronously. If a \marginpar is processed while page
n is being being built, but doesn’t get used until page
n—+1, then the \marginpar will turn up on the wrong side
of the page. This is an instance of a general problem: see
question 196.

The solution to the problem is for IMTEX to ‘remem-
ber’ which side of the page each \marginpar should be
on. The mparhack package does this, using marks stored
in the .aux file.

mparhack.sty: macros/latex/contrib/supported/
mparhack

220 Where have my characters gone?

You've typed some apparently reasonable text and pro-
cessed it, but the result contains no sign of some of the
characters you typed. A likely reason is that the font you
selected just doesn’t have a representation for the char-
acter in question.

For example, if I type “that will be £44.00” into an
ordinary (IM)TEX document, or if I select the font rsfs10
(which contains uppercase letters only) and type pretty
much anything, the £ sign, or any lowercase letters or
digits will not appear in the output. There’s no actual
error message, either: you have to read the log file, where
you’ll find cryptic little messages like

Missing character:
There is no

Missing character:
There is no 3 in font rsfsi10!

“"a3 in font cmrilO!

(the former demonstrating my TEX’s unwillingness to deal
in characters which have the eighth bit set, while the
rsfs10 example shows that TEX will log the actual char-
acter in error, if it thinks it’s possible).

Somewhat more understandable are the diagnostics
you may get from dvips when using the OT1 and T1 ver-
sions of fonts that were supplied in Adobe standard en-
coding;:
dvips: Warning: missing glyph ‘Delta’

The process that generates the metrics for using the fonts
generates an instruction to dvips to produce these diag-
nostics, so that their non-appearance in the printed out-
put is less surprising than it might be. Quite a few glyphs

73

available in Knuth’s text encodings and in the Cork en-
coding are not available in the Adobe fonts. In these
cases, there is a typeset sign of the character: dvips pro-
duces a black rectangle of whatever size the concocted
font file has specified.

221

The IXTEX message “Rerun to get crossreferences right”
is supposed to warn the user that his job needs to be
processed again, since labels seem to have changed since
the previous run. (KTEX compares the labels it’s cre-
ated this time round with what it found from the previ-
ous run when it started; it does this comparison at \end
{document}.)

Sometimes, the message won’t go away: however of-
ten you reprocess your document, IATEX still tells you
that “Label(s) may have changed”. This can sometimes
be caused by a broken package: both footmisc (with the
perpage option) and hyperref have been known to give
trouble, in the past: if you are using either, check you
have the latest version, and upgrade if possible.

However, there is a rare occasion when this error can
happen as a result of pathological structure of the docu-
ment itself. Suppose you have pages numbered in roman,
and you add a reference to a label on page “ix” (9). The
presence of the reference pushes the thing referred to onto
page “x” (10), but since that’s a shorter reference the la-
bel moves back to page “ix” at the next run. Such a
sequence can obviously not terminate.

The only solution to this problem is to make a small
change to your document (something as small as adding
or deleting a comma will often be enough).

“Rerun” messages won’t go away

footmisc.sty: macros/latex/contrib/supported/
footmisc

hyperref.sty: macros/latex/contrib/supported/
hyperref

222 Commands gobble following space

People are forever surprised that simple commands gobble
the space after them: this is just the way it is. The effect
arises from the way TEX works, and Lamport describes
a solution (place a pair of braces after a command’s in-
vocation) in the description of IXTEX syntax. Thus the
requirement is in effect part of the definition of IXTEX.

This FAQ, for example, is written with definitions that
require one to type \fred{} for almost all macro invo-
cations, regardless of whether the following space is re-
quired: however, this FAQ is written by highly dedicated
(and, some would say, eccentric) people. Many users find
all those braces become very tedious very quickly, and
would really rather not type them all.

An alternative structure, that doesn’t violate the de-
sign of INTEX, is to say \fred\ — the \ command is “self
terminating” (like \\) and you don’t need braces after
it. Thus one can reduce to one the extra characters one
needs to type.

If even that one character is too many, the package
xspace defines a command \xspace that guesses whether
there should have been a space after it, and if so intro-
duces that space. So “fred\xspace jim” produces “fred

”

jim”, while “fred\xspace. jim” produces “fred. jim”.

Which usage would of course be completely pointless; but
you can incorporate \xspace in your own macros:

\usepackage{xspace}

\newcommand{\restenergy}y
{\ensuremath{mc~2}\xspace}

and we find \restenergy available to us...

The \xspace command must be the last thing in your
macro definition (as in the example); it’s not completely
foolproof, but it copes with most obvious situations in
running text.

The zspace package doesn’t save you anything if you
only use a modified macro once or twice within your docu-
ment, and in any case be careful with usage of \xspace —
it offers a change in your input syntax which can be con-
fusing, particularly if you retain some commands which
don’t use it. (Of course, any command built into WTEX
or into any class or package you use won’t use \xspace:
you need to think every time you use such a command.)
And of course, be careful to explain what you're doing to
any collaborating author!

zspace. sty: Distributed as part of
macros/latex/required/tools

223 (I)TEX makes overfull lines

When TgX is building a paragraph, it can make several
attempts to get the line-breaking right; on each attempt
it runs the same algorithm, but gives it different param-
eters. You can affect the way TEX’s line breaking works
by adjusting the parameters: this answer deals with the
“tolerance” and stretchability parameters. The other vi-
tal ‘parameter’ is the set of hyphenations to be applied:
see question 170 (and the questions it references) for ad-
vice.

If you're getting an undesired “overfull box”, what has
happened is that TEX has given up: the parameters you
gave it don’t allow it to produce a result that doesn’t over-
fill. In this circumstance, Knuth decided the best thing
to do was to produce a warning, and to allow the user to
solve the problem. (The alternative, silently to go beyond
the envelope of “good taste” defined for this run of TEX,
would be distasteful to any discerning typographer.) The
user can almost always address the problem by rewrit-
ing the text that’s provoking the problem — but that’s
not always possible, and in some cases it’s impossible to
solve the problem without adjusting the parameters. This
answer discusses the approaches one might take to reso-
lution of the problem, on the assumption that you've got
the hyphenation correct.

The simplest case is where a ‘small’ word fails to break
at the end of a line; pushing the entire word to a new line
isn’t going to make much difference, but it might make
things just bad enough that TEX won’t do it by default.
In such a case on can try the ITEX \linebreak com-
mand: it may solve the problem, and if it does, it will
save an awful lot of fiddling. Otherwise, one needs to ad-
just parameters: to do that we need to recap the details
of TEX’s line breaking mechanisms.

TEX’s first attempt at breaking lines is performed
without even trying hyphenation: TgEX sets its “tol-

74

erance” of line breaking oddities to the internal value
\pretolerance, and sees what happens. If it can’t get
an acceptable break, TEX adds the hyphenation points
allowed by the current patterns, and tries again using the
internal \tolerance value. If this pass also fails, and
the internal \emergencystretch value is positive, TEX
will try a pass that allows \emergencystretch worth of
extra stretchability to the spaces in each line.

In principle, therefore, there are three parame-
ters (other than hyphenation) that you can change:
\pretolerance, \tolerance and \emergencystretch.
Both the tolerance values are simple numbers, and
should be set by TEX primitive count assignment — for
example

\pretolerance=150

For both, an “infinite” tolerance is represented by the
value 10000, but infinite tolerance is rarely appropriate,
since it can lead to very bad line breaks indeed.

\emergencystretch is a TEX-internal ‘dimen’ regis-
ter, and can be set as normal for dimens in Plain TEX; in
ETEX, use \setlength — for example:

\setlength{\emergencystretch}{3em}

The the choice of method has time implications —
each of the passes takes time, so adding a pass (by chang-
ing \emergencystretch) is less desirable than suppress-
ing one (by changing \pretolerance). However, it’s un-
usual nowadays to find a computer that’s slow enough
that the extra passes are really troublesome.

In practice, \pretolerance is rarely used other than
to manipulate the use of hyphenation; Plain TEX and
ETEX both set its value to 100. To suppress the first
scan of paragraphs, set \pretolerance to -1.

\tolerance is often a good method for adjusting spac-
ing; Plain TEX and ETEX both set its value to 200.
ETEX’s \sloppy command sets it to 9999, as does the
sloppypar environment. This value is the largest avail-
able, this side of infinity, and can allow pretty poor-
looking breaks (this author rarely uses \sloppy “bare”,
though he does occasionally use sloppypar — that way,
the change of \tolerance is confined to the environ-
ment). More satisfactory is to make small changes to
\tolerance, incrementally, and then to look to see how
the change affects the result; very small increases can of-
ten do what’s necessary. Remember that \tolerance is a
paragraph parameter, so you need to ensure it’s actually
applied — see question 216. ITEX users could use an
environment like:

\newenvironment{tolerant}[1]{/
\par\tolerance=#1\relax
H%
\par
}
enclosing entire paragraphs (or set of paragraphs) in it.
\emergencystretch is a slightly trickier customer to
understand. The example above set it to 3em; the Com-
puter Modern fonts ordinarily fit three space skips to the
em, so the change would allow anything up to the equiv-
alent of nine extra spaces in each line. In a line with lots
of spaces, this could be reasonable, but with (say) only

three spaces on the line, each could stretch to four times
its natural width.

V The joy of TEX errors

224 How to approach errors

Since TEX is a macroprocessor, its error messages are of-
ten difficult to understand; this is a (seemingly invari-
ant) property of macroprocessors. Knuth makes light of
the problem in the TEXbook, suggesting that you acquire
the sleuthing skills of a latter-day Sherlock Holmes; while
this approach has a certain romantic charm to it, it’s not
good for the ‘production’ user of (IA)TEX. This answer
(derived, in part, from an article by Sebastian Rahtz in
TUGboat 16(4)) offers some general guidance in dealing
with TEX error reports, and other answers in this section
deal with common (but perplexing) errors that you may
encounter. There’s a long list of “hints” in Sebastian’s
article, including the following:

e Look at TEX errors; those messages may seem cryp-
tic at first, but they often contain a straightforward
clue to the problem. See question 225 for further
details.

e Read the .log file; it contains hints to things you
may not understand, often things that have not even
presented as error messages.

e Be aware of the amount of context that TEX gives
you. The error messages gives you some bits of TEX
code (or of the document itself), that show where
the error “actually happened”; it’s possible to con-
trol how much of this ‘context’ TEX actually gives
you. IATEX (nowadays) instructs TEX only to give
you one line of context, but you may tell it otherwise
by saying

\setcounter{errorcontextlines}{999}

in the preamble of your document. (If you're not a
confident macro programmer, don’t be ashamed of
cutting that 999 down a bit; some errors will go on
and on, and spotting the differences between those
lines can be a significant challenge.)

e As alast resort, tracing can be a useful tool; reading
a full (IM)TEX trace takes a strong constitution, but
once you know how, the trace can lead you quickly
to the source of a problem. You need to have read
the TEXbook (see question 22) in some detail, fully
to understand the trace.

The command \tracingall sets up maximum trac-
ing; it also sets the output to come to the interac-
tive terminal, which is somewhat of a mixed blessing
(since the output tends to be so vast — all but the
simplest traces are best examined in a text editor
after the event).

The BTEX trace package (first distributed with the
2001 release of KTEX) provides more manageable
tracing. Its \traceon command gives you what
\tracingall offers, but suppresses tracing around
some of the truly verbose parts of IXTEX itself.
The package also provides a \traceoff command
(there’s no “off” command for \tracingall), and

75

a package option (logonly) allows you to suppress
output to the terminal.

The best advice to those faced with TEX errors is not
to panic: most of the common errors are plain to the
eye when you go back to the source line that TEX tells
you of. If that approach doesn’t work, the remaining an-
swers in this section deal with some of the odder error
messages you may encounter. You should not ordinarily
need to appeal to the wider public (question 25) for as-
sistance, but if you do, be sure to report full backtraces
(see errorcontextlines above) and so on.

trace.sty: Distributed as part of
macros/latex/required/tools

225 The structure of TEX error messages

TEX’s error messages are reminiscent of the time when
TEX itself was conceived (the 1970s): they’re not terribly
user-friendly, though they do contain all the information
that TEX can offer, usually in a pretty concise way.
TEX’s error reports all have the same structure:

e An error message
e Some ‘context’
e An error prompt

The error message will relate to the TgX condition that
is causing a problem. Sadly, in the case of complex macro
packages such as I'TEX, the underlying TEX problem may
be superficially difficult to relate to the actual problem in
the “higher-level” macros. Many KTEX-detected prob-
lems manifest themselves as ‘generic’ errors, with error
text provided by IXTEX itself (or by a WTEX class or pack-
age).

The context of the error is a stylised representation
of what TEX was doing at the point that it detected the
error. As noted in question 224, a macro package can
tell TEX how much context to display, and the user may
need to undo what the package has done. Each line of
context is split at the point of the error; if the error ac-
tually occurred in a macro called from the present line,
the break is at the point of the call. (If the called object
is defined with arguments, the “point of call” is after all
the arguments have been scanned.) For example:

\blah and so on
produces the error report
! Undefined control sequence.

1.4 \blah
and so on

while:

\newcommand{\blah}[1]{\bleah #1}
\blah{to you}, folks
produces the error report
! Undefined control sequence.
\blah #1->\bleah

#1
1.5 \blah{to you}

, folks
If the argument itself is in error, we will see things such
as
\newcommand{\blah}[1]{#1 to you}
\blah{\bleah}, folks

producing

! Undefined control sequence.
<argument> \bleah

1.5 \blah{\bleah}
, folks

The prompt accepts single-character commands: the
list of what’s available may be had by typing 7. One
immediately valuable command is h, which gives you an
expansion of TEXs original précis message, sometimes ac-
companied by a hint on what to do to work round the
problem in the short term. If you simply type ‘return’
(or whatever else your system uses to signal the end of a
line) at the prompt, TEX will attempt to carry on (often
with rather little success).

226 An extra ‘}’?7?

You've looked at your IXTEX source and there’s no sign of
a misplaced } on the line in question.

Well, no: this is TEX’s cryptic way of hinting that
you've put a fragile command in a moving argument (see
question 192).

For example, \footnote is fragile, and if we put that
in the moving argument of a \section command, as

\section{Mumble\footnote{%
I couldn’t think of anything betterl}}

we get told
! Argument of \@sect has an extra }.

The solution is usually to use a robust command in
place of the one you are using, or to force your command
to be robust by prefixing it with \protect, which in the
above case would show as

\section{Mumble\protect\footnote{’,
I couldn’t think of anything betterl}}

Note that, in some cases, simple \protection is not
the answer; question 161 deals specifically with this case.

227 Capacity exceeded [semantic nest...]

! TeX capacity exceeded, sorry [semantic nest

size=100].

If you really absolutely need more capacity,
you can ask a wizard to enlarge me.

Even though TEX suggests (as always) that enlargement
by a wizard may help, this message usually results from a
broken macro or bad parameters to an otherwise working
Macro.

The “semantic nest” TEX talks about is the nesting
of boxes within boxes. A stupid macro can provoke the
error pretty easily:

\def\silly{\hbox{here’s \silly being executed}}
\silly
The extended traceback (see question 224) does help,
though it does rather run on. In the case above, the
traceback consists of
\silly ->\hbox {

here’s \silly being executed}

followed by 100 instances of

76

\silly ->\hbox {here’s \silly

being executed}
The repeated lines are broken at exactly the offending
macro; of course the loop need not be as simple as this —
if \silly calls \dopy which boxes \silly, the effect is
just the same and alternate lines in the traceback are
broken at alternate positions.

228 No room for a new ‘thing’

The technology available to Knuth at the time TEX was
written is said to have been particularly poor at man-
aging dynamic storage; as a result much of the storage
used within TEX is allocated as fixed arrays, in the ref-
erence implementations. Many of these fixed arrays are
expandable in modern TEX implementations, but size of
the arrays of “registers” is written into the specification
as being 256 (usually); this number may not be changed
if you still wish to call the result TEX (see question 5).

If you fill up one of these register arrays, you get a
TEX error message saying

! No room for a new \<thing>.

The \things in question may be \count (the object un-
derlying IATEX’s \newcounter command), \skip (the ob-
ject underlying IATEX’s \newlength command), \box (the
object underlying IWTEX’s \newsavebox command), or
\dimen, \muskip, \toks, \read, \write or \language
(all types of object whose use is “hidden” in BTEX; the
limit on the number of \read or \write objects is just
16).

There is nothing that can directly be done about this
error, as you can’t extend the number of available regis-
ters without extending TEX itself. (Of course, 2 and e-
TEX — see questions 236 and 237 respectively — both do
this, as does MicroPress Inc’s VIEX — see question 55.)

The commonest way to encounter one of these error
messages is to have broken macros of some sort, or in-
correct usage of macros (an example is discussed in ques-
tion 229). However, sometimes one just needs more than
TEX can offer, and when this happens, you've just got
to work out a different way of doing things. An exam-
ple is the difficulty of loading P[CTEX with BTEX (see
question 203).

229

Some copies of the documentation of epsf.tex seem to
suggest that the command

epsf gives up after a bit

\input epsf
is needed for every figure included. If you follow this sug-
gestion too literally, you get an error

! No room for a new \read .

after a while; this is because each time epsf.tex is
loaded, it allocates itself a mew file-reading handle to
check the figure for its bounding box, and there just aren’t
enough of these things (see question 228).

The solution is simple — this is in fact an example of
misuse of macros; one only need read epsf.tex once, so
change

\input epsf
\epsffile{...}

\input epsf
\epsffile{...}
(and so on) with a single
\input epsf
somewhere near the start of your document, and then

decorate your \epsffile statements with no more than
adjustments of \epsfxsize and so on.

230 Improper \hyphenation will be flushed
For example

! Improper \hyphenation will be flushed.
\#1->{
\accent 19 #1}

<*> \hyphenation{Ji-m\’e

-nez}
(in Plain TEX) or
! Improper \hyphenation will be flushed.
\leavevmode ->\unhbox

\voidb@x

<*> \hyphenation{Ji-m\’e

-nez}
in BTRX.

As mentioned in question 170, words with accents in
them may not be hyphenated. As a result, any such word
is deemed improper in a \hyphenation command.

The solution is to use a font that contains the charac-
ter in question, and to express the \hyphenation com-
mand in terms of that character; this “hides” the ac-
cent from the hyphenation mechanisms. ETEX users
can be achieved this by use of the fontenc package
(part of the IXTEX distribution). If you select an
8-bit font with the package, as in \usepackage[T1]
{fontenc}, accented-letter commands such as the \’e in
\hyphenation{Ji-m\’e-nez} automatically become the
single accented character by the time the hyphenation
gets a to look at it.

231

If IXTEX responds to a \begin{figure} or \begin
{table} command with the error message

“Too many unprocessed floats”

! LaTeX Error: Too many unprocessed floats.

See the LaTeX manual or LaTeX Companion
for explanation.

your figures (or tables) are failing to be placed properly.
ETEX has a limited amount of storage for ‘floats’ (fig-
ures, tables, or floats you've defined yourself with the
float package); if you don’t let it ever actually typeset
any floats, it will run out of space.

This failure usually occurs in extreme cases of floats
moving “wrongly” (see question 204); KTEX has found it
can’t place a float, and floats of the same type have piled
up behind it. ETEX’s idea is to ensure that caption num-
bers are sequential in the document: the caption number
is allocated when the figure (or whatever) is created, and
can’t be changed, so that placement out of order would
mean figure numbers appearing out of order in the docu-
ment (and in the list of figures, or whatever). So a simple

7

failure to place a figure means that no subsequent figure
can be placed; and hence (eventually) the error.

Techniques for solving the problem are discussed in
the floats question (204) already referenced.

The error also occurs in a long sequence of figure
or table environments, with no intervening text. Un-
less the environments will fit “here” (and you’ve allowed
them to go “here”), there will never be a page break,
and so there will never be an opportunity for KTEX to
reconsider placement. (Of course, the floats can’t all fit
“here” if the sequence is sufficiently polonged: once the
page fills, IWTEX won’t place any more floats Techniques
for resolution may involve redefining the floats using the
float package’s [H] float qualifier, but you are unlikely to
get away without using \clearpage from time to time.

float.sty: macros/latex/contrib/supported/float

232 \spacefactor complaints
The errors

! You can’t use ‘\spacefactor’ in vertical mode.
\@->\spacefactor

\@m
or

! Improper \spacefactor.

come of using a KTEX internal command without taking
the precaution of fooling IXTEX that you're inside it. The
problem is discussed in detail in question 191, together
with solutions.

233 \end occurred inside a group

The actual error we observe is:

(\end occurred inside a group at level <n>)

and it tells us that something we started in the docu-
ment never got finished before we ended the document
itself. The things involved (‘groups’) are what TEX uses
for restricting the scope of things: you see them, for
example, in the “traditional” font selection commands:
{\it stuff\/} — if the closing brace is left off such a
construct, the effect of \it will last to the end of the
document, and you’ll get the diagnostic.

TEX itself doesn’t tell you where your problem is, but
you can often spot it by looking at the typeset output
in a previewer. Otherwise, you can usually find mis-
matched braces using an intelligent editor (at least emacs
and winedt offer this facility). However, groups are not
only created by matching { with }: other grouping com-
mands are discussed elsewhere in these FAQs, and are also
a potential source of unclosed group.

\begin{(environment)} encloses the environment’s
body in a group, and establishes its own diagnostic mech-
anism. If you end the document before closing some other
environment, you get the ‘usual’ XTEX diagnostic

! LaTeX Error: \begin{blah} on input line 6
ended by \end{document}.

which (though it doesn’t tell you which file the \begin
{blah} was in) is usually enough to locate the immedi-
ate problem. If you press on past the IXTEX error, you
get the “occurred inside a group” message before KTEX
finally exits.

In the absence of such information from KTEX, you
need to use “traditional” binary search to find the offend-
ing group. Separate the header from the body of your file,
and process each half on its own with the header; this tells
you which half of the file is at fault. Divide again and re-
peat. The process needs to be conducted with care (it’s
obviously possible to split a correctly-written group by
chopping in the wrong place), but it will usually find the
problem fairly quickly.

e-TEX (and elater — ITEX run on e-TEX) gives you
further diagnostics after the traditional infuriating TEX
one — it actually keeps the information in a similar way

to ITEX:

(\end occurred inside a group at level 3)

semi simple group (level 3) entered

at line 6 (\begingroup)
simple group (level 2) entered at line 5 ({)
simple group (level 1) entered at line 4 ({)
bottom level

The diagnostic not only tells us where the group started,
but also the way it started: \begingroup or { (which is
an alias of \bgroup, and the two are not distinguishable
at the TEX-engine level).

234 “Missing number, treated as zero”

In general, this means you’ve tried to assign something
to a count, dimension or skip register that isn’t (in TEX’s
view of things) a number. Usually the problem will be-
come clear using the ordinary techniques of examining
errors (see question 224).

Two KETEX-specific errors are commonly aired on the
NewSgroups.

The first arises from a misconfiguration in a sys-
tem that has been upgraded from IXTEX 2.09: the doc-
ument uses \usepackage{times}, and the error appears
at \begin{document}: the likely cause is lurking files that
remain from the I¥TEX 2.09 version of the times package.
The times package in psnfss is a very simple beast, but
the IWTEX 2.09 version is quite complicated, and loads an-
other package: this is clear in the log if you have been
“bitten” this way. The resolution is to clear out all the old
PostScript-related packages, and then to install psnfss.

The second arises from attempting to use an example
describe in The ITEX Companion (see question 22), and
is exemplified by the following error text:

! Missing number, treated as zero.
<to be read again>

\relax
1.21 \begin{Ventry}{Return values}

The problem arises because the Companion’s examples
always assume that the calc package is loaded: this fact
is mentioned in the book, but often not noticed. The
remedy is to load the calc package in any document using
such examples from the Companion.

calc.sty: Distributed as part of
macros/latex/required/tools

The psnfss bundle: macros/latex/required/psnfss

78

W Current TEX Projects

235 The BTEXS3 project

The KTEX3 project team (see http://www.latex-
project.org/latex3.html) is a small group of volun-
teers whose aim is to produce a major new document
processing system based on the principles pioneered by
Leslie Lamport in the current IXTEX. It will remain freely
available and it will be fully documented at all levels.

The IATEX3 team’s first product (BTEX 2¢) was deliv-
ered in 1994 (it’s now properly called “I4TEX”, since no
other version is current).

IXTEX 2¢ was intended as a consolidation exercise, uni-
fying several sub-variants of A TEX while changing nothing
whose change wasn’t absolutely necessary. This has per-
mitted the team to support a single version of IMTEX, in
parallel with development of IATEX3.

Some of the older discussion papers about directions
for IATEX3 are to be found at info/1tx3pub; other (pub-
lished) articles are to be found on the project web site
(see http://www.latex-project.org/articles.html),
as is some of the project’s experimental code (http://
www.latex-project.org/experimental). You can par-
ticipate in discussions of the future of IXTEX through
the mailing list latex-1. Subscribe to the list by
sending a message ‘subscribe latex-1 <your name>’
to listserv@urz.Uni-Heidelberg.de

236 The Omega project

Omega () is a program built by extension of the TEX
sources which works internally with ‘wide’ characters (it
is capable of dealing with all of Unicode version 3); this
allows it to work with most scripts in the world with few
difficulties from coding schemes. 2 also has a powerful
concept of input and output filters to allow the user to
work with existing transliteration schemes, etc.

An email discussion list is available: subscribe
by sending a message ‘subscribe’ to omega-request@
omega.cse.unsw.edu.au

Q was first released in November 1996 by the project
originators, John Plaice and Yannis Haralambous; a re-
cent version is maintained on CTAN. However, 2 is now
an open source project, and details of a cvs repository, as
well as papers and other information, are available via the
project’s web site (http://omega.cse.unsw.edu.au).

Implementations of €2 are available as part of the
teTEX, mikTEX, fpTEX and CMacTEX distributions (see
question 53); €2 is also distributed on the TgX Live CD-
ROM (see question 52).

CTAN distribution: systems/omega

237 The N'TS project

The N'78 project was established in 1992, to produce
a typesetting system that’s even better than TEX. The
project is not simply enhancing TEX, for two reasons:
first, that TEX itself has been frozen by Knuth (see ques-
tion 18), and second, even if they were allowed to develop
the program, some members of the N'78S team feel that
TEX in its present form is simply unsuited to further de-
velopment. While all those involved in the project are
committed to TEX, they recognise that the end product

may very well have little in common with TEX other than
its philosophy.

The group’s first product was nevertheless a set of ex-
tensions and enhancements to TEX, implemented through
the standard medium of a change-file. The extended sys-
tem is known e-TEX, and is 100% compatible with TEX;
furthermore, e-TEX can construct a format that is “TEX”,
with no extensions or enhancements present.

The most recent base source of e-TEX (i.e., the Web
change file) is available on CTAN. Implementations of e-
TEX are also distributed on the TEX Live CD-ROM (see
question 52), and with most other modern free TEX dis-
tributions.

The project has now produced a -version of TEX writ-
ten (from scratch) in Java. Since it isn’t TEX (it remains
slightly incompatible in microscopic ways), it’s known as
NT78. As might be expected, this first re-implementation
runs rather slowly, but its operation has been demon-
strated in public, and the (-release is available on CTAN.

e-TeX: Browse systems/e-tex

NTS: systems/nts

238 The PDFTEX project

PDFTEX (formerly known as TEX2PDF) arose from Han
Thé Thénh’s post-graduate research at Masaryk Univer-
sity, Brno, Czech Republic. The basic idea is very simple:
to provide a version of TEX that can output PDF as an
alternative format to DVI. PDFTEX implements a small
number of new primitives, to switch to PDF output, and
to control various PDF features. Han Thé Thénh has
worked on PDFTEX throughout his Ph.D. research into
typesetting, and the latest release includes facilities writ-
ten to support novel typesetting techniques.

The latest version of PDFTEX is available on CTAN,
and implementations are available as part the teTgX,
mikTEX, fpTEX, and CMacTgX distributions (see ques-
tion 53); it is also distributed on the TEX Live CD-ROM
(see question 52). A version (by the author of CMacTEX)
for use with OzTEX is also available on CTAN.

A mailing list discussing PDFTEX is available;
send a message containing (just) subscribe pdftex to
majordomo@tug.org (you will be required to confirm your
subscription).

pdftex: Browse systems/pdftex

pdftex for 0zTeX: nonfree/systems/mac/pdftex/
pdftex_for_oztex.sit.bin

239 Future WEB technologies and (I2)TEX

An earlier question (69) addresses the issue of converting
existing (IM)TEX documents for viewing on the Web as
HTML. All the present techniques are somewhat flawed:
the answer explains why.

However, things are changing, with better font avail-
ability, cunning HTML programming and the support for
new Web standards.

Font technologies Direct representation of mathemat-
ics in browsers has been hampered up to now by the
limited range of symbols in the fonts one can rely

79

on being available. In the near future, we can ex-
pect rather wide availability of Unicode fonts with
better coverage of symbols.

XML The core of the range of new standards is XML,

which provides a framework for better structured
markup; limited support for for it has already ap-
peared in some browswers.
Conversion of (I4)TEX source to XML is already
available (through TEpX4ht at least), and work con-
tinues in that arena. The alternative, authoring in
XML (thus producing documents that are immedi-
ately Web-friendly, if not ready) and using (I4)TEX
to typeset is also well advanced. One useful tech-
nique is transforming the XML to IXTEX, using
XSLT, and then simply using IXTEX; alternatively,
one may typeset direct from the XML source (see
question 70).

Direct represention of mathematics MathML is a
standard for representing maths on the Web; its
original version is distinctly limited, but efforts to
give it greater richness (approaching that of TEX)
are under way. Browser support for MathML (e.g.,
in amaya, a version of the Netscape ‘Open Source’
browser mozilla and in specially extended versions
of Internet Explorer) is becoming available. There’s
evidence that (I4)TEX users are starting to use such
browsers.

Work both the TEX4ht and TtH projects, to pro-
duce MathML is well advanced.

Graphics SVG is a standard for graphics representation
on the web. While the natural use is for converting
existing figures, representations of formulas are also
possible, in place of the separate bitmaps that have
been used in the past (and while we wait for the
wide deployment of MathML).

Browser plug-ins, that deal with SVG are already
available (Adobe offer one, for example).

240 The TgXtrace project

TEXtrace is a bundle of Unix scripts that use a free-
ware boundary tracing package to generate Type 1 outline
fonts from METAFONT bitmap font outputs. The result
is unlikely ever to be of the quality of the commercially-
produced Type 1 font, but there remain fonts which many
people find useful and which fail to attract the paid ex-
perts.

The project was started by Péter Szabd, and its
current state is available via the project’s entry on
Sourceforge (see http://sourceforge.net/projects/
textrace/) and there are already a few sets of fonts
on CTAN generated using TpXtrace: Péter Szabd’s own
EC/TC font set, Vladimir Volovich’s CM-Super set, which
covers the EC, TC, and the Cyrillic LH font sets, and
Takanori Uchiyama’s set of the MusixTEX fonts.

A package that says it’s “inspired” by TgXtrace is
pktrace: this is a small Python program that does
the same job — see http://www.cs.ruu.nl/ hanwen/
pktrace/; it has not yet been used to generate fonts that
have been installed on CTAN.

CM-Super fonts: fonts/ps-typel/cm-super
Type 1 versions of EC and TC fonts:

fonts/ps-typel/ec

musiztezr fonts: fonts/musixtex/ps-—
typel/musixps-unix.tar.gz

X You’re still stuck?

241 You don’t understand the answer

While the FAQ maintainers don’t offer a ‘help’ service,
they’re very keen that you understand the answers they’ve
already written. They're (almost) written “in a vacuum”,
to provide something to cover a set of questions that have
arisen; it’s always possible that they’re written in a way
that a novice won’t understand them.

Which is where you can help the community. Mail
the maintainers (see mailto:uktug-faq@tex.ac.uk) to
report the answer that you find unclear. Time permit-
ting (the team is small and all its members are busy),
we’ll try and clarify the answer. This way, with a bit of
luck, we can together improve the value of this resource
to the whole community.

(We need hardly say that we look forward to hear-
ing from none of you: but we're not so arrogant as to be
confident that we won’t!)

242 Submitting new material for the FAQ

The FAQ will never be complete, and we always expect
that there will be people out there who know better than
we do about something or other. We always need to be
put right about whatever we’ve got wrong, and sugges-
tions for improvements, particularly covering areas we’ve
missed, are always needed: mail anything you have to the
maintainers (see mailto:uktug-faq@tex.ac.uk).

If you have actual material to submit, your contribu-
tion is more than ever welcome. Submission in plain text
is entirely acceptable, but if you're really willing, you may
feel free to mark up your submission in the form needed
for the FAQ itself. The markup is a strongly-constrained
version of TEX — the constraints come from the need
to translate the marked-up text to HTML on the fly (and
hence pretty efficiently). There is a file markup-syntax
in the FAQ distribution that describes the structure of
the markup, but there’s no real substitute for reading at
least some of the source (fagbody.tex) of the FAQ itself.
If you understand perl, you may also care to look at the
translation code in texfaq2html in the distribution: this
isn’t (any longer) the program actually used on the Web
site, but it’s kept up to date with that version, for testing
purposes.

FAQ distribution: help/uk-tex-faq

243 Reporting a BKTEX bug

The ETEX team supports BTEX, and will deal with bona
fide bug reports. However, you need to be slightly careful
to produce a bug report that is usable by the team. The
steps are:

1. Are you still using current TEX? Maintenance is only
available for sufficiently up-to-date versions of INTEX —
if your BTEX is more than two versions out of date, the
bug reporting mechanisms will reject your report.

80

2. Has your bug already been reported? Browse the
KTEX bugs database (see http://www.latex-project.
org/cgi-bin/ltxbugs2html?introduction=yes), to
find any earlier instance of your bug. In many cases,
the database will list a work-around.

3. Prepare a “minimum” file that exhibits the problem.
Ideally, such a file should contain no contributed pack-
ages — the KTREX team as a whole takes no responsibility
for such packages (if they’re supported at all, they’re sup-
ported by their authors). The “minimum” file should be
self-sufficient: if a member of the team should run it in a
clean directory, on a system with no contributed packages,
it should replicate your problem.

4. Run your file through ETEX: the bug system needs
the .log file that this process creates.

You now have two possible ways to proceed: either
create a mail report to send to the bug processing mech-
anism (5, below), or submit your bug report via the web
(7, below).

5. Process the bug-report creation file, using KTEX itself:
latex latexbug

latexbug asks you some questions, and then lets you
describe the bug you’ve found. It produces an output
file 1atexbug.msg, which includes the details you've sup-
plied, your “minimum” example file, and the log file you
got after running the example. (I always need to edit the
result before submitting it: typing text into latexbug
isn’t much fun.)

6. Mail the resulting file to latex-bugs@latex-
project.org; the subject line of your email should be
the same as the bug title you gave to latexbug. The
file 1atexbug.msg should be included into your message
in-line: attachments are likely to be rejected by the bug
processor.

7. Connect to the latex bugs processing web page (see
http://www.latex-project.org/bugs-upload.html)
and enter details of your bug — category, summary and
full description, and the two important files (source and
log file); note that the MTEX team need your name and
email address, as they may need to discuss the bug with
you, or to advise you of a work-around.

244 What to do if you find a bug

For a start, make entirely sure you have found a bug.
Double-check with books about TEX, IKTEX, or what-
ever you're using; compare what you’re seeing against the
other answers above; ask every possible person you know
who has any TgEX-related expertise. The reasons for all
this caution are various.

If you’ve found a bug in TEX itself, you're a rare an-
imal indeed. Don Knuth is so sure of the quality of his
code that he offers real money prizes to finders of bugs;
the cheques he writes are such rare items that they are
seldom cashed. If you think you have found a genuine
fault in TEX itself (or METAFONT, or the CM fonts, or
the TgXbook), don’t immediately write to Knuth, how-
ever. He only looks at bugs once or twice a year, and even
then only after they are agreed as bugs by a small vet-
ting team. In the first instance, contact Barbara Beeton
at the AMS (bnb@math.ams.org), or contact TUG (see
question 21).

If you've found a bug in ETEX2e, you may report newsgroup such as comp.tex.tex or on a mailing list
it (see question 243) using mechanisms supplied in the such as texhax@tex.ac.uk, but posting non-bugs to any
ETEX distribution. of these forums can lay you open to ridicule! Other-

If you've found a bug in ITEX2.09, or some other wise you need to go out and find yourself a willing TEX-
such unsupported software, there’s not a lot you can do consultant — TUG maintains a register of TEX consul-
about it. You may find help or de facto support on a tants (see http://www.tug.org/consultants.html).

81

	A Introduction
	B The Background
	1 What is TEX?
	2 How should I pronounce "TEX"?
	3 What is METAFONT?
	4 What is MetaPost?
	5 How can I be sure it's really TEX?
	6 Are TEX and friends Y2K compliant?
	7 What is LATEX?
	8 What is LATEX
	9 How should I pronounce "LATEX(
	10 Should I use Plain TEX or LATEX?
	11 How does LATEX relate to Plain TEX?
	12 What is ConTEXt?
	13 What are the AMS packages (AMS-TEX, etc.)?
	14 What is Eplain?
	15 What is Lollipop?
	16 What is Texinfo?
	17 If TEX is so good, how come it's free?
	18 What is the future of TEX?
	19 Reading (LA)TEX files
	20 Why is TEX not a wysiwyg system?
	21 TEX User Groups

	C Documentation and Help
	22 Books on TEX and its relations
	23 Books on Type
	24 Where to find FAQs
	25 Where to get help
	26 How to ask a question
	27 (LA)TEX Tutorials, etc.
	28 Learning to write LATEX classes and packages
	29 METAFONT and MetaPost Tutorials
	30 BibTEX Documentation
	31 Where can I find the symbol for.
	32 The PICTEX manual

	D Bits and pieces of TEX
	33 What is a DVI file?
	34 What is a driver?
	35 What are PK files?
	36 What are TFM files?
	37 Virtual fonts
	38 \special commands
	39 Documented LATEX sources (. dtx files)
	40 What are encodings?
	41 How does hyphenation work in TEX?
	42 What are the EC fonts?
	43 What is the TDS?
	44 What is "Encapsulated PostScript"

	E Acquiring the Software
	45 Repositories of TEX material
	46 What's the CTAN nonfree tree?
	47 Contributing a file to the archives
	48 Finding (LA)TEX macro packages
	49 Finding files in the CTAN archives
	50 Finding files by Web search
	51 Finding new fonts
	52 TEX CD-ROMs

	F TEX Systems
	53 (LA)TEX for di�erent machines
	54 TEX-friendly editors and shells
	55 Commercial TEX implementations

	G DVI Drivers and Previewers
	56 DVI to PostScript conversion programs
	57 DVI drivers for HP LaserJet
	58 Output to "other" printers
	59 DVI previewers

	H Support Packages for TEX
	60 Fig, a TEX-friendly drawing package
	61 TEXCAD, a drawing package for LATEX
	62 Spelling checkers for work with TEX
	63 How many words have you written?

	I Literate programming
	64 What is Literate Programming?
	65 WEB systems for various languages

	J Format conversions
	66 Conversion between (LA)TEX and others
	67 Conversion from (LA)TEX to plain ASCII
	68 Conversion from SGML or HTML to TEX
	69 (LA)TEX conversion to HTML
	70 Using TEX to read SGML or XML directly
	71 Retrieving (LA)TEX from DVI, etc.
	72 Translating LATEX to Plain TEX

	K Hypertext and PDF
	73 Making hypertext documents from TEX
	74 Making Acrobat documents from LATEX
	75 Quality of PDF from PostScript
	76 Finding '8-bit' Type 1 fonts
	77 Replacing Type 3 fonts in PostScript

	L METAFONT and MetaPost
	78 Getting METAFONT to do what you want
	79 Which font files should be kept
	80 Acquiring bitmap fonts
	81 Making MetaPost output display in ghostscript

	M PostScript and TEX
	82 Using PostScript fonts with TEX
	83 Previewing files using Type 1 fonts
	84 TEX font metric files for PostScript fonts
	85 Deploying Type 1 fonts
	86 Choice of scalable outline fonts
	87 Including a PostScript figure in (LA)TEX
	88 Weird characters in dvips output

	N Bibliographies and citations
	89 Creating a bibliography style
	90 Capitalisation in BibTEX
	91 'String too long' in BibTEX
	92 BibTEX doesn't understand my lists of names
	93 Citing URLs with BibTEX
	94 Using BibTEX with Plain TEX
	95 Separate bibliographies per chapter?
	96 Multiple bibliographies?
	97 Putting bibliography entries in text
	98 Sorting and compressing citations
	99 Multiple citations
	100 Listing all my BibTEX entries
	101 Making HTML of your Bibliography

	O Installing (LA) files
	102 Installing a new package
	103 Where to put new files
	104 "Temporary" installation of (LA)TEX files

	P Adjusting the typesetting
	P. 1 Alternative document classes
	105 Formatting a thesis in LATEX
	106 Setting papers for journals
	107 A 'report' from lots of 'article's
	108 Curriculum Vitae (Resum¥e)
	109 Letters and the like

	P. 2 Document structure
	110 The style of document titles
	111 The style of section headings
	112 Indent after section headings
	113 How to create a \subsubsubsection
	114 The style of captions
	115 Alternative head- and footlines in LATEX
	116 Changing the margins in LATEX
	117 Wide figures in two-column documents
	118 1-column abstract in 2-column document
	119 Really blank pages between chapters
	120 Balancing columns at the end of a document

	P. 3 Page layout
	121 How to get rid of page numbers
	122 \pagestyle{empty} on first page in LATEX
	123 How to create crop marks
	124 'Watermarks' on every page
	125 Typesetting things in landscape orientation
	126 Putting things at fixed positions on the page

	P. 4 Spacing of characters and lines
	127 Double-spaced documents in LATEX
	128 Changing the space between letters
	129 Setting text ragged right
	130 Cancelling \ragged commands

	P. 5 Typesetting specialities
	131 Including a file in verbatim in LATEX
	132 Including line numbers in typeset output
	133 Generating an index in (LA)TEX
	134 Typesetting URLs
	135 Typesetting music in TEX
	136 Other "document font" sizes?
	137 Zero paragraph indent
	138 Set specifications and Dirac brackets
	139 Big letters at the start of a paragraph
	140 Code listings in LATEX
	141 The comma as a decimal separator
	142 Breaking boxes of text

	P. 6 Tables of contents and indexes
	143 The format of the Table of Contents, etc.
	144 Unnumbered sections in the Table of Contents
	145 Bibliography, index, etc., in TOC
	146 Multiple indexes

	Q How do I do X in (LA)TEX
	Q.1 Mathematics
	147 Proof environment
	148 Roman theorems
	149 Defining a new log- like function in LATEX

	Q.2 Lists
	150 Fancy enumeration lists
	151 How to reduce list spacing

	Q.3 Tables, figures and diagrams
	152 Fixed- width tables
	153 Spacing lines in tables
	154 Tables longer than a single page
	155 How to alter the alignment of tabular cells
	156 Flowing text around figures in LATEX
	157 Drawing with TEX
	158 Drawing Feynman diagrams in LATEX
	159 Floats on their own on float pages

	Q.4 Footnotes
	160 Footnotes in tables
	161 Footnotes in LATEX section headings
	162 Footnotes in captions
	163 Footnotes whose texts are identical

	Q.5 Document management
	164 What's the name of this file
	165 All the files used by this document
	166 Marking changed parts of your document
	167 Conditional compilation
	168 Bits of document from other directories
	169 Version control using RCS or CVS

	Q.6 Hyphenation
	170 My words aren't being hyphenated
	171 Weird hyphenation of words
	172 (Merely) peculiar hyphenation
	173 Accented words aren't hyphenated
	174 Using a new language with Babel
	175 Stopping all hyphenation

	Q.7 Odds and ends
	176 Typesetting all those TEX-related logos
	177 Referring to things by their name
	178 How to do bold- tt or bold- sc

	R Symbols, etc.
	179 Symbols for the number sets
	180 Better script fonts for maths
	181 Setting bold Greek letters in LATEX
	182 The Principal Value Integral symbol
	183 How to use the underscore character
	184 How to type an '@' sign?
	185 Typesetting the Euro sign

	S Macro programming
	186 Finding the width of a letter, word, or phrase
	187 How to change LATEX's "fixed names"
	188 Changing the words babel uses
	189 Running equation, figure and table numbering
	190 Patching existing commands
	191 \@ and @ in macro names
	192 What's the reason for 'protection'?
	193 \edef does not work with \protect
	194 Optional arguments like \section
	195 Making labels from a counter
	196 Finding if you're on an odd or an even page
	197 How to change the format of labels
	198 Comparing the "job name"
	199 Is the argument a number?
	200 Defining macros within macros
	201 Spaces in macros

	T Things are Going Wrong.
	T.1 Getting things to fit
	202 Enlarging TEX
	203 Why can't I load PICTEX?

	T.2 Making things stay where you want them
	204 Moving tables and figures in LATEX
	205 Underlined text won't break
	206 Controlling widows and orphans

	T.3 Things have "gone away"
	207 Old LATEX font references such as \tenrm
	208 Missing symbol commands
	209 Where are the msx and msy fonts?
	210 Where are the am fonts?

	U Why does it do that?
	U.1 Common errors
	211 LATEX gets cross- references wrong
	212 Start of line goes awry
	213 Why doesn't \verb work within. ?
	214 No line here to end

	U.2 Common misunderstandings
	215 What's going on in my \include commands?
	216 Why does it ignore paragraph parameters?
	217 Case-changing oddities
	218 Why does LATEX split footnotes across pages?
	219 Getting \marginpar on the right side
	220 Where have my characters gone?
	221 "Rerun" messages won't go away
	222 Commands gobble following space
	223 (LA)TEX makes overfull lines

	V The joy of TEX errors
	224 How to approach errors
	225 The structure of TEX error messages
	226 An extra '}'??
	227 Capacity exceeded [semantic nest.]
	228 No room for a new 'thing'
	229 epsf gives up after a bit
	230 Improper \hyphenation will be flushed
	231 "Too many unprocessed floats"
	232 \spacefactor complaints
	233 \end occurred inside a group
	234 "Missing number, treated as zero"

	W Current TEX Projects
	235 The LATEX3 project
	236 The Omega project
	237 The project
	238 The PDFTEXNT S project
	239 Future WEB technologies and (LA)TEX
	240 The TEXtrace project

	X You're still stuck?
	241 You don't understand the answer
	242 Submitting new material for the FAQ
	243 Reporting a LATEX bug
	244 What to do if you find a bug

