
LATEX for Complete Novices

Nicola Talbot

Monday 27th September, 2004

Contents

1 Introduction 1
1.1 Recommended Reading . 2

2 Some Definitions 4
2.1 Source Code . 5
2.2 DVI File (or Output File) . 5
2.3 Commands (also called “Macros” or “Control Sequences”) 5
2.4 Grouping . 5
2.5 Arguments (also called “Parameters”) 6

2.5.1 Mandatory Arguments . 6
2.5.2 Optional Arguments . 7

2.6 Declarations . 8
2.7 Environments . 9
2.8 Preamble . 9
2.9 Class File . 10
2.10 TEX . 10

3 From Source Code to Typeset Output 11
3.1 Notepad, MS-DOS Prompt, YAP . 12
3.2 TeXnicCenter . 19
3.3 WinEdt . 28

4 Creating a Simple Document 31
4.1 Using Simple Commands . 33
4.2 Special Characters and Symbols . 34
4.3 Lists . 37

4.3.1 Unordered Lists . 37
4.3.2 Ordered Lists . 39
4.3.3 Description Environment . 41

4.4 Simple font changing commands . 43

5 Creating Chapters, Sections etc 45
5.1 Author and title information . 45
5.2 Abstract . 46
5.3 Sections, Subsections . 47
5.4 Creating a Table of Contents . 49
5.5 Cross-Referencing . 50
5.6 Creating a Bibliography . 54
5.7 Page Styles and Page Numbering . 57
5.8 Aligning Material in Rows and Columns 59

i

CONTENTS ii

6 Packages 64
6.1 Using Packages . 64

6.1.1 graphicx Package . 64
6.1.2 Changing the format of \today 68

6.2 Downloading and Installing Packages 68

7 Figures and Tables 71
7.1 Figures . 71

7.1.1 Subfigures . 73
7.2 Tables . 74

8 Defining Commands 76
8.1 Defining Commands with an Optional Argument 81
8.2 Redefining Commands . 82

9 Mathematics 85
9.1 In-Line Mathematics . 85
9.2 Displayed Mathematics . 86
9.3 Mathematical Commands . 87

9.3.1 Maths Fonts . 88
9.3.2 Greek Letters . 88
9.3.3 Subscripts and Superscripts 89
9.3.4 Functional Names . 92
9.3.5 Fractions . 95
9.3.6 Roots . 97
9.3.7 Mathematical Symbols . 99
9.3.8 Delimiters . 102
9.3.9 Arrays . 108
9.3.10 Vectors . 109
9.3.11 Mathematical Spacing . 110

10 Defining Environments 112

11 Counters 115

12 Lengths 118

13 Common Errors 120
13.1 * (No message, just an asterisk prompt!) 121
13.2 Argument of \cline has an extra } 121
13.3 Argument of \multicolumn has an extra } 121
13.4 \begin{. . . } ended by \end{. . . } . 121
13.5 Bad math environment delimiter . 122
13.6 Can only be used in preamble. 122
13.7 Command . . . already defined . 122
13.8 Display math should end with $$. 122
13.9 Environment . . . undefined. 122
13.10Extra alignment tab has been changed to \cr 123
13.11Extra \right . 123
13.12File ended while scanning use of . 123
13.13File not found. 123
13.14Illegal character in array arg . 124
13.15Illegal parameter number in definition 124
13.16Illegal unit of measure (pt inserted). 124
13.17Lonely \item . 124

CONTENTS iii

13.18Misplaced alignment tab character & 125
13.19Missing } inserted . 125
13.20Missing $ inserted . 125
13.21Missing \begin{document} . 126
13.22Missing delimiter . 126
13.23Missing \endcsname inserted . 127
13.24Missing \endgroup inserted . 127
13.25Missing number, treated as zero . 127
13.26Paragraph ended before \begin was complete 127
13.27Runaway argument . 128
13.28Something’s wrong–perhaps a missing \item. 128
13.29There’s no line here to end. 129
13.30Undefined control sequence . 129
13.31You can’t use ‘macro parameter character #’ in horizontal mode . . 130

Bibliography 131

Index 132

List of Figures

3.1 Using notepad . 13
3.2 Saving your document . 14
3.3 File saved correctly . 14
3.4 File saved incorrectly . 15
3.5 MS-DOS Prompt . 15
3.6 Changing Directory . 16
3.7 Using LATEX . 16
3.8 LATEX output . 17
3.9 Three New Files Created by LATEX 17
3.10 Loading output file into YAP . 18
3.11 Viewing typeset document . 18
3.12 Using PDFLATEX. 19
3.13 PDFLATEX Output. 20
3.14 Viewing PDF file in Acrobat . 20
3.15 TeXnicCenter Tip of the Day Window 21
3.16 TeXnicCenter Configuration Wizard 22
3.17 TeXnicCenter Configuration Wizard 22
3.18 TeXnicCenter Configuration Wizard 23
3.19 TeXnicCenter . 23
3.20 New Project Dialog Box . 24
3.21 New Project Dialog Box . 24
3.22 TeXnicCenter — New Project Started 25
3.23 TeXnicCenter — Typing in Source Code 25
3.24 TeXnicCenter — Selecting Output Type 26
3.25 TeXnicCenter (using LATEX and dvips) 27
3.26 TeXnicCenter — Showing Error . 27
3.27 WinEdt . 28
3.28 WinEdt . 29
3.29 WinEdt — Saving the File . 29
3.30 WinEdt — LATEX Output . 30

6.1 Updating the database . 70

7.1 Some shapes . 72
7.2 Two Shapes: (a) A Rectangle and (b) A Circle 74

iv

List of Tables

4.1 Symbols . 35
4.2 Ligatures and Special Symbols . 36
4.3 Accent Commands . 36
4.4 Font changing commands . 43
4.5 Font changing declarations . 43
4.6 Font size changing declarations . 44

7.1 A Sample Table . 74
7.2 A Sample Table . 75

8.1 Object Names . 84

9.1 Maths Font Changing Commands . 88
9.2 The amsfonts and amsmath Font Commands 89
9.3 Lower Case Greek Letters . 90
9.4 Upper Case Greek Letters . 90
9.5 Function Names . 92
9.6 Relational Symbols . 99
9.7 Binary Operator Symbols . 100
9.8 Arrow Symbols . 100
9.9 Symbols with Limits . 100
9.10 Ellipses . 101
9.11 Delimiters . 103
9.12 Mathematical Spacing Commands 111

12.1 Units of Measurement . 118

v

List of Exercises

1 Simple Document . 32
2 Using Simple Commands . 33
3 Using Special Characters . 36
4 Lists . 42
5 Fonts . 44
6 Creating Title Pages . 45
7 Creating an Abstract . 46
8 Creating Chapters, Sections etc . 48
9 Creating a Table of Contents . 49
10 Cross-Referencing . 53
11 Creating a Bibliography . 57
12 Page Styles and Page Numbering . 59
13 Aligning Material . 62
14 Using the graphicx Package . 67
15 Downloading and Installing a New Package 70
16 Creating Figures . 72
17 Creating Sub-Figures . 74
18 Creating Tables . 75
19 Defining a New Command . 80
20 Defining Commands with an Optional Argument 82
21 Renewing Commands . 84
22 Maths: Fractions and Symbols . 102
23 Maths: Vectors and Arrays . 110
24 More Mathematics . 110
25 Defining a New Environment . 114
26 Using Counters . 117

vi

Chapter 1

Introduction

The aim of this document is to introduce LATEX to a non-technical person. LATEX
is excellent for producing professional looking documents, however it is a language
not a word processor, so it can take a bit of getting used to, particularly if you have
never had any experience using programming languages.

LATEX does take a while to learn, so why should I use it? Firstly, LATEX is far
better at typesetting mathematical equations than word processors. Compare the
following equations:

1. Using equation editor in Microsoft Word1:

2. Using LATEX:

∂2L
∂zρi

2 = − ∂ρi
∂zρi

(
∂vi
∂ρi

evi

1− evi
+ vi

evi ∂vi∂ρi
(1− evi) + e2vi ∂vi

∂ρi

(1− evi)2

)

(Incidentally, this equation was taken from some kernal survival analysis, so it is
a genuine piece of mathematics. You will find out how to create this equation on
page 104 in Section 9.3.8.)

Secondly, LATEX makes it very easy to cross-reference chapters, sections, equa-
tions, figures, tables etc, and it also makes it very easy to generate a table of con-
tents, list of figures, list of tables, index, glossary and bibliography. You don’t need
to worry about numbering anything, as this is done automatically, which means
that you can insert new sections or swap sections around without having to worry
about updating all the section numbering etc. LATEX can also ensure consistent
formatting, and the style of the document can be completely changed simply by
using a different class file, or loading additional packages.

Thirdly, when you are editing a document using a word processor, the word
processor has to work out how to reformat the document everytime you type some-
thing. If you have a large document with a great many inserted objects (such as
figures and equations), the response to keyboard input can become very slow. You
may find that after typing a few words you will have to wait until the computer

1I was unable to find a caligraphic font for the L. The font looks a little ragged because I had
to convert it to bitmap to include it into the document.

1

CHAPTER 1. INTRODUCTION 2

catches up before you can see what you have typed. With LATEX you type your code
in using an ordinary text editor. The document doesn’t get formatted until you pass
it to LATEX, which means that you are not slowed down by constant reformatting.

Lastly, there’s the fact that LATEX follows certain typographical rules, so you
can leave most of the typesetting to LATEX. You rarely need to worry about minor
things such as remembering to put two spaces between sentences and only one space
between words, as LATEX will do this automatically, and it will also automatically
deal with f-ligatures. That is, if any of the following combination of letters are found:
fl, ffl, ff, fi, ffi, they will automatically be converted into the corresponding
ligatures: fl, ffl, ff, fi, ffi. Note the difference between fluffier (2 ligatures) and fluffier
(no ligatures). These points may seem minor but they all contribute towards the
impact of the entire document. When writing technical documents, the presentation
as well as the content is important. All too often examiners, referees etc are put
off reading a document because it is badly formatted. This provokes an immediate
negative reaction and provides little desire to look favourably upon your work.

To give you an idea of what you can do with LATEX, this document was writ-
ten in LATEX. The PostScript version was generated using LATEX, makeindex and
dvips, the PDF versions were generated using PDFLATEX and makeindex and the
HTML version was generated using the LATEX2HTML2 converter. All versions were
generated from the same source code with occasional switches for minor variations
between formats3.

This document is structured as follows: Chapter 2 defines terms that will be used
throughout this document. If you like, you can give this chapter a cursory glance
to begin with and go back to it later. Chapter 3 details the software that you will
need to use LATEX and describes how to use the software. Chapter 4 shows you
how to create a very basic document. Chapter 5 shows you how to create chapters,
sections etc so that you end up with a fully structured document. Chapter 6 shows
you how to load packages, and also how to download and install additional packages
that weren’t installed with your LATEX distribution. Chapter 7 describes how to
create figures and tables. Chapter 8 describes how to define your own commands.
Chapter 9 describes how to typeset mathematics. Chapter 10 describes how to
define new environments. Chapter 11 discusses counters. Chapter 12 discusses
lengths, and Chapter 13 documents possible errors you may encounter, and gives
advice on how to fix them.

This document and associated files are available on-line at: http://theoval.
cmp.uea.ac.uk/~nlct/latex/novices/. This document is also available in 6×4in
PDF format for on-line viewing and HTML format. If you are viewing this document
in Acrobat Reader, you can click on the bookmarks tab to help navigate your way
around the document.

1.1 Recommended Reading

This document is designed as an introductory text, not a comprehensive guide. For
further reading try some of the following:

“LATEX : a document preparation system” by Leslie Lamport [1] is the user’s
guide and reference manual for LATEX, and is a good basic text for anyone start-
ing out, however it doesn’t cover AMSTEX, so anyone who needs to typeset more
than basic mathematics may prefer either “A guide to LATEX” by Helmut Kopka
and Patrick Daly [2] or “The LATEX companion” by Michel Goossens, Frank Mittel-
bach and Alexander Samarin [3]. Both these books cover AMSTEX, BibTEX and

2http://www.latex2html.org/
3plus a small Perl script to generate the file size information that appears at the start of the

HTML version

http://www.latex2html.org/
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/novices_scr.pdf
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/novices_scr.pdf
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/novices.html
http://www.latex2html.org/

CHAPTER 1. INTRODUCTION 3

makeindex. “A guide to LATEX” also has an appendix that contains a brief summary
of all commands described in the book for a quick and easy reference which is quite
useful.

In the same series as “The LATEX companion”, there is also “The LATEX graphics
companion” by Michel Goossens, Sebastian Rahtz and Frank Mittelbach [4] which
details how to illustrate documents with LATEX and PostScript, including a chapter
on colour (coloured text, background, tables and slides). This is recommended
to anyone who is contemplating heavy use of graphics, but you do need a basic
knowledge of LATEX before delving into it.

The final book in the “Companion” series is “The LATEX web companion” by
Michel Goossens, Sebastian Rahtz et al. [5] which is recommended for those in-
terested in creating documents for the web, either as HTML or PDF. This book
details how to convert LATEX documents into HTML using various applications such
as LaTeX2HTML and TeX4ht, and how to create PDF documents using PDFLaTeX,
including how to create active links within your document using the hyperref
package.

There is also a wealth of LATEX-related information on the world wide web. The
Comprehensive TEX Archive Network4 (CTAN) is a good place to start. In the
UK, the TEX Archive at http://www.tex.ac.uk/ is closer. You can check the
on-line catalogue for information about available software, and there is also a list
of frequently asked questions which I recommend you try if you have any queries.
You can also try using a search engine, such as Google, but take care not to simply
search for “latex” or you will end up with thousands of hits, most of which will be
totally irrelevant. Search engines are unable to tell the difference between LaTeX
(the typesetting language) and latex (the plant substance or synthetic product),
so I would recommend that you use the advance search facility to exclude certain
obvious words related to the latter (and you might also want to consider selecting
the “filter using SafeSearch” option.) It would also be a good idea to specify a few
extra words to help narrow down your search. For example, if you want a general
introduction to LATEX, you could type latex into the box marked “with all of the
words” and type introduction beginners guide novices into the box marked
“with at least one of the words”. Alternatively, if you have an error message
you don’t understand, you could try typing part of the error message into the box
marked “with the exact phrase”.

4http://www.ctan.org/

http://www.tex.ac.uk/
http://www.tex.ac.uk/tex-archive/help/Catalogue/catalogue.html
http://www.tex.ac.uk/faq
http://www.google.com/
http://www.google.com/advanced_search?hl=en
http://www.ctan.org/

Chapter 2

Some Definitions

As mentioned in the previous chapter, LATEX is a language, so you can’t simply
start typing and expect to see your document appear before your very eyes. You
need to know a few things before you can get started, so it’s best to define a few
terms first. Don’t worry if there seems a lot to take in, there will be some practical
examples later, which should hopefully make things a little clearer.

Throughout this document, source code is illustrated by a typewriter font with
the word Input placed in the margin, and the corresponding output is typeset with
the word Output in the margin. For example:

Sample Code:

This is an \textbf{example}. Input

Resulting output:

This is an example. Output

Segments of code that are longer than one line are bounded above and below by a
horizontal line, illustrated as follows:

↑Input

Line one\par
Line two\par
Line three.

↓Input

with corresponding output:

↑Output

Line one
Line two
Line three.

↓Output

Command definitions are shown in a typewriter font in the form:

\documentclass[options]{class file} Definition

4

CHAPTER 2. SOME DEFINITIONS 5

In this case the command being defined is called \documentclass and text typed
like this (e.g. options and class file) indicates the type of thing you need to substitute.
For example, if you want the article class file you would substitute class file with
article and if you want the a4paper option you would substitute options with
a4paper, like this:

\documentclass[a4paper]{article}

But more on that later.

2.1 Source Code

The source code is all the text and LATEX commands that make up an entire doc-
ument. The source code is typed in using a text editor, and saved with the file
extension .tex. The source code may be contained in just one file, or it might be
split across several files.

2.2 DVI File (or Output File)

The LATEX application will convert your source code into typeset output which will
be written to a device independent (DVI) file. This file can then be viewed using a
DVI viewer. MiKTeX comes with the DVI viewer YAP. If you are using the X Window
System (under UNIX or Linux etc), the DVI viewer is called xdvi.

2.3 Commands (also called “Macros” or “Control
Sequences”)

A command usually begins with a backslash, (e.g. \today) and is used to tell LATEX
to do a particular thing at that point in the document. For example, \today will
print the current date, \twocolumn will start a new page, and change to a two
column format, \LaTeX will print the LaTeX logo: LATEX. Most LATEX commands
have fairly self-explanatory names. (For example, \rightarrow prints an arrow
pointing to the right, \chapter starts a new chapter.) All commands are case-
sensitive, so \gamma and \Gamma have different meanings.

There is one command that you must use in every document you create, and
that is the \documentclass command. This command must be placed at the very
start of your document, and indicates what type of document you are creating. This
command takes an argument, and is described in more detail in Chapter 4.

2.4 Grouping

Segments of code may be grouped by placing it within { and } (curly braces). Most
commands that occur within a group will be local to that group. For example,
\bfseries changes the font weight to bold, so the following segment of code:

↑Input

Here is some text. {This text \bfseries is in a
group.} Here is some more text.

↓Input

will appear in the typeset document looking like:

CHAPTER 2. SOME DEFINITIONS 6

Here is some text. This text is in a group. Here is some more text. Output

As can be seen, the font change only stays in effect until it reaches the end of
the group (signified by the closing curly brace }.)

2.5 Arguments (also called “Parameters”)

Some commands take one or more arguments. This allows you to give LATEX ad-
ditional information, so that it is able to carry out the command. There are two
types of arguments: mandatory and optional.

2.5.1 Mandatory Arguments

Mandatory (or compulsory) arguments are arguments that have to be specified.
Examples:

1. If you want to start a new chapter, you need to use the \chapter command,
but you also need to tell LATEX the title of this new chapter. So the \chapter
command takes one mandatory argument that specifies the title. For example,
the following code:

\chapter{Some Definitions} Input

was used to generate the heading for Chapter 2 of this document.

2. The command \textbf typesets its argument in a bold font (as opposed to
the declaration \bfseries which switches to a bold font.) The following code:

\textbf{Some bold text.} Input

will look like:

Some bold text. Output

Notes

1. LATEX takes the first object following the command name as the argument,
which is why the argument has to be grouped. Suppose the last example
above didn’t have a group, so instead the code was:

\textbf Some bold text. Input

then only the ‘S’ would be the argument because it’s the first object following
the command, in which case the output would look like:

Some bold text. Output

CHAPTER 2. SOME DEFINITIONS 7

2. If you want the argument to be blank, use empty braces: {}. For example,
suppose you want to have a chapter without a title1 you would need to do:

\chapter{} Input

2.5.2 Optional Arguments

Some commands may have one or more optional arguments. Unlike mandatory
arguments, optional arguments must always be enclosed in square brackets [].
For example, the command \\ starts a new line. So the following segment of code:

Line one\\ Line two. Input

will produce the following output:

↑Output

Line one
Line two.

↓Output

However the \\ command also has an optional argument that allows you to specify
how big the gap between the two lines should be. So the following segment of code:

Line one\\[1cm] Line two. Input

will produce the following output:

↑Output

Line one

Line two.
↓Output

Incidentally, note the difference between the previous example, and the following
example:

Code:

Line one\\{[1cm]} Line two. Input

Output:

↑Output

Line one
[1cm] Line two.

↓Output

1The numbers for chapters, sections etc are automatically inserted by LATEX, so this example
would produce a numbered chapter without a title.

CHAPTER 2. SOME DEFINITIONS 8

In this example the [1cm] has been placed inside a group, so it is no longer con-
sidered to be an optional argument, and since the command \\ does not take a
mandatory argument, the [1cm] is simply interpreted as ordinary text.

Here’s another example: The command \framebox takes a mandatory argument
and an optional argument. \framebox puts a frame around the contents of its
mandatory argument:
Code:

\framebox{Some Text} Input

Output:

Some Text Output

The optional argument can be used to make the box a specified width:
Code:

\framebox[4cm]{Some Text} Input

Output:

Some Text Output

And there’s a second optional argument that specifies the justification of the text
(left, right or centred) within the box:
Code:

\framebox[4cm][r]{Some Text} Input

Output:

Some Text Output

In general, if a command has both optional and mandatory arguments, the
optional arguments are usually specified first (although there are a few exceptions.)

2.6 Declarations

The term declaration is used to refer to a command that affects the document from
that point onwards. The declaration itself does not produce any text, and its effect
can be localised by placing the declaration within a group. For example, \bfseries
is a declaration that switches the current font weight to bold:

↑Input
Here is some normal text.
\bfseries Here is some bold text.

↓Input

will appear in the typeset document looking like:

Here is some normal text. Here is some bold text. Output

CHAPTER 2. SOME DEFINITIONS 9

2.7 Environments

An environment is a block of code contained within the commands \begin{env-
name} and \end{env-name}, where env-name is the name of the environment. The
block of code is then formatted in a method specific to that environment. For
example, the bfseries2 environment will typeset the contents of the environment
in a bold font. The following code:

↑Input

\begin{bfseries}
Here is some bold text.
\end{bfseries}

↓Input

will appear in the typeset document looking like:

Here is some bold text. Output

Some environments also supply commands that may only be used within that
environment. For example, the itemize environment provides a command called
\item so that you can specify individual items within an unordered list.

Example:

↑Input

Shopping List:
\begin{itemize}
\item Cabbages
\item Bananas
\item Apples
\end{itemize}

↓Input

will produce the following output:

↑Output

Shopping List:

• Cabbages

• Bananas

• Apples

↓Output

2.8 Preamble

The preamble is the part of the source code that comes between the \documentclass
command and \begin{document} (the start of the document environment). Only
a few special commands may be placed in the preamble, and there are a few special
commands that may only go in the preamble.

2note there is no backslash in the environment name

CHAPTER 2. SOME DEFINITIONS 10

\documentclass{...}

\begin{document}

←− This bit in here is the preamble.

2.9 Class File

The class file (.cls) defines the page layout, heading styles and various commands
and environments needed for a particular style of document. The class file is spec-
ified using the command

\documentclass[options]{class-name} Definition

where class-name is the name of the file without the .cls extension. All LATEX
documents must start with this command.

2.10 TEX

TEX is the typesetting language written by Donald Knuth. Plain TEX is a bit com-
plicated to use, unless you want to write a very basic document, so Leslie Lamport
wrote a format of TEX called LATEX to make it a bit easier to use. You can think
of LATEX as a go-between converting your instructions into TEX. This document
mostly uses the term LATEX, even if the matter is more general to TEX, to avoid com-
plicating matters. Some error messages you may see will be LATEX messages, some
will be TEX messages. LATEX error messages tend to be a bit easier to understand
than TEX messages.

Chapter 3

From Source Code to
Typeset Output

Every time you want to create or edit a LATEX document, there are three basic steps
you will always need to follow:

1. Write or edit the source code

2. Pass the source code to the LATEX application (“LATEX the document”)

• If there are any error messages, return to Step 1

• If there are no error messages, a DVI file is created.

3. View the DVI file to check the result. If you need to modify your document,
go back to Step 1.

You will therefore need:

1. A text editor or front-end (to perform Step 1), see below.

2. The TEX/LATEX installation (to perform Step 2). There are a number avail-
able, however a popular choice for Windows is MiKTeX, which is free and can
be downloaded from the TEX Archive [6] in the systems/win32/miktex di-
rectory and is easy to install. Simply follow the installation instructions.
Default values are provided if you are unsure what option to choose, but if
you have any difficulties, contact your system adminstrator. Note that even
if you are using a front-end, you must first install MiKTeX (or some other
TEX/LATEX installation). If you are using UNIX or Linux, a popular choice
is teTeX, this can be downloaded from the systems/unix or systems/linux
directories.

3. A DVI viewer (to perform Step 3). The TEX/LATEX installation should come
with a DVI viewer. (MiKTeX comes with YAP.) It is also possible to con-
vert your DVI file into PostScript (.ps) or Acrobat (.pdf) format, in which
case you will need GSView or Acrobat, respectively, to view the files1. By
converting your output to PostScript or PDF, you can enhance the function-
ality of LATEX allowing you to perform operations such as rotating text (See
Section 6.1.1 for further details). If you use PDFLATEX to generate a PDF
document, you can also create active links (see The LATEX Web Companion [5]

1GSview can also display PDF files, but any links in the document will be inactive

11

http://www.tex.ac.uk/tex-archive/systems/win32/miktex/
http://www.tex.ac.uk/tex-archive/systems/win32/miktex/setup/install.pdf
http://www.tex.ac.uk/tex-archive/systems/unix
http://www.tex.ac.uk/tex-archive/systems/linux

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 12

for more information, or if you’d rather a brief on-line introduction you can
try Creating a PDF Document using PDFLaTeX2).

Documented below are instructions of how to use LATEX on Windows using three
different methods:

1. Using notepad as a text editor, the MS-DOS Prompt to access LATEX, and YAP
to view the DVI file.

2. Using the front-end TeXnicCenter (free) to perform all three steps.

3. Using the front-end WinEdt (shareware) to perform all three steps.

Using notepad and the MS-DOS Prompt is fiddly and prone to human error,
however it is useful to know, just in case there is a situation that the front-end can’t
handle (e.g. you want to LATEX a file that doesn’t have a .tex extension, which may
happen if you want to install new packages on your system — some front-ends allow
you to do this, others may not). I would therefore strongly recommend that you
use one of the front-ends (TeXnicCenter or WinEdt) rather than using notepad.
TeXnicCenter and WinEdt are both easy to use, although TeXnicCenter has the
advantage of being free.

If you are using UNIX or Linux, follow the instructions for using notepad and
the MS-DOS prompt, but sustitute notepad for your favourite text editor (e.g. vim
or emacs), use a terminal instead of the MS-DOS Prompt, and use xdvi instead of
YAP.

3.1 Notepad, MS-DOS Prompt, YAP

Notepad is a very basic text editor that comes with Windows. It is usually found
through the Start menu:

Start → Programs → Accessories → Notepad
Once you have opened up notepad, you can start to type in your source code.

(See Figure 3.1.)
Care needs to be taken when saving the document, as notepad automatically

tries to add the extension .txt to any file you save, whereas all LATEX files must
have the extension .tex. You can force notepad to do this by placing the filename
in double quotes in the “Save as” dialogue box. (See Figure 3.2.)

You can check to see if your file has been saved correctly by looking at the
directory viewer. If the file has been saved correctly, it should look something like
Figure 3.3.

If the file has the incorrect .txt extension added to it, it will probably look
something like Figure 3.4. In this case the icon indicates that this is an ordinary
text file. If you look at the file’s properties you will see that its name is actually
sample1.tex.txt, which is incorrect.

Step 1 is now complete. Time to move on to Step 2: passing the source code to
LATEX. To do this you will need to run the MS-DOS Prompt. This is usually found
in:

Start → Programs → MS-DOS Prompt
or

Start → Programs → Accessories → MS-DOS Prompt
The command prompt should look something like Figure 3.5.

The first thing you need to do is to change to the directory where you saved
your file (otherwise LATEX won’t know where the file is.) You can do this using the

2http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/

http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 13

Figure 3.1: Using notepad

cd command. I saved my file in the directory My Documents\Nicky\samples on
the C drive. Since the directory name has a space in it, it will need to be enclosed
in double quotes. At the command prompt, I would then have to type

cd "c:\My Documents\Nicky\samples"

as shown in Figure 3.6.
You can now pass the source code to LATEX. I called my file sample1.tex so I

would need to type

latex sample1.tex

at the command prompt, as shown in Figure 3.7. (You don’t have to specify the .tex
extension, as LATEX will automatically assume your file has the correct extension).

If there are no errors in the document, you should see something like the output
shown in Figure 3.8. (If you do get an error message, check the list of common
errors in Chapter 13.)

The second to last line

Output written on sample1.dvi (1 page, 248 bytes).

indicates that the resulting typeset document has been saved as the file sample1.dvi
and it is one page long. Numbers appearing in square brackets, e.g. [1], indicate
which page LATEX is currently processing. In this case, there is only one page. The
last line to appear on screen indicates that information about this LATEX run has
been written to the log file sample1.log, which you can look at using notepad.
You can see these new files by having a look at the directory viewer, as shown in
Figure 3.9.

You can view the typeset output by loading the file sample1.dvi into YAP. You
can do this either by double clicking on its icon, or by typing

yap sample1.dvi

at the command prompt. (See Figure 3.10.)
You will then see the final output, as shown in Figure 3.11.

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 14

Figure 3.2: Saving your document

Figure 3.3: File saved correctly

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 15

Figure 3.4: File saved incorrectly

Figure 3.5: MS-DOS Prompt

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 16

Figure 3.6: Changing Directory

Figure 3.7: Using LATEX

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 17

Figure 3.8: LATEX output

Figure 3.9: Three New Files Created by LATEX

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 18

Figure 3.10: Loading output file into YAP

Figure 3.11: Viewing typeset document

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 19

Figure 3.12: Using PDFLATEX.

If you like, you can then convert your DVI file into a PostScript file by using
dvips. To do this, type the following in the MS-DOS Prompt window:

dvips -o sample1.ps sample1.dvi

You can then view the PostScript file using GSView3 which can be downloaded from
the TEX Archive [6].

Alternatively, you can create a PDF document instead by using PDFLATEX in-
stead of LATEX:

pdflatex sample1.tex

as shown in Figure 3.12. (Again the extension may be omitted.)
The output is shown in Figure 3.13.
The new PDF file sample1.pdf can now be loaded into Acrobat4, as shown in

Figure 3.14.
Each time you want to edit the document, you will have to go back to Step 1

(although you shouldn’t need to worry about changing directory anymore, unless
you exit the MS-DOS Prompt.) This method can be rather cumbersome, however
life is made a lot easier by using a front-end, such as WinEdt or TeXnicCenter.

3.2 TeXnicCenter

TeXnicCenter is an application that enables you to edit LATEX source code, and
simply click on a button to pass the source code to LATEX, and then click on an-
other button to view the resulting typeset document. This alieviates the problems
encountered using notepad and the MS-DOS Prompt detailed in Section 3.1.

TeXnicCenter is free and can be downloaded from the TEX Archive [6] in the
systems/win32/TeXnicCenter/ directory. Note that you must have a TEX/LATEX
distribution installed before you install TeXnicCenter. Once you have downloaded

3ghostview or ggv if you are using UNIX or Linux
4You can either use xpdf or acroread if you are using UNIX or Linux

http://www.tex.ac.uk/tex-archive/systems/win32/TeXnicCenter/

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 20

Figure 3.13: PDFLATEX Output.

Figure 3.14: Viewing PDF file in Acrobat

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 21

the TeXnicCenter setup file5, run it by double clicking on its icon in the directory
viewer. I recommend that you use the default settings. If you have any problems
installing TeXnicCenter, contact your systems administrator.

Once the installation is complete, you can then run TeXnicCenter from the
Start Menu:

Start → Programs → TeXnicCenter → TeXnicCenter
Firstly you should see the tip of the day window (Figure 3.15.)

Figure 3.15: TeXnicCenter Tip of the Day Window

You can close this window, and then, if this is the first time you are using
TeXnicCenter you will have to use the configuration wizard to set up TeXnicCenter
correctly. I would recommend that you choose the default settings. (Select Next,
Next and then Finish.)

Now you are ready to use TeXnicCenter. It should look like Figure 3.19.
To start a new project select File → New Project. This will open the window

shown in Figure 3.20.
Enter a name for your project, and specify the directory where you want to save

your work. For example, I shall call my project “example” and I want to save it in
c:\My Documents\Nicky\example (see Figure 3.21.)

Select the “Empty Project” icon, and click on “Okay”. You should now see
something like Figure 3.22.

You can now start typing the source code (we’ll cover this later). See Figure 3.23.

Save it by either clicking on the save icon or select File → Save
Now select what type of output you want (DVI, PDF or PostScript) see Fig-

ure 3.24. If this box is blank, then it’s possible that you didn’t complete all the
steps in the configuration wizard described above.

Now click on the build output icon or select Build → Build Output. The
transcript will be written in the window at the bottom (see Figure 3.25) This tran-

5currently called TXCSetup 1Beta6 21.exe

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 22

Figure 3.16: TeXnicCenter Configuration Wizard

Figure 3.17: TeXnicCenter Configuration Wizard

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 23

Figure 3.18: TeXnicCenter Configuration Wizard

Figure 3.19: TeXnicCenter

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 24

Figure 3.20: New Project Dialog Box

Figure 3.21: New Project Dialog Box

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 25

Figure 3.22: TeXnicCenter — New Project Started

Figure 3.23: TeXnicCenter — Typing in Source Code

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 26

Figure 3.24: TeXnicCenter — Selecting Output Type

script should be the same as described on page 13 onwards. If you have selected
LaTeX => PDF, then TeXnicCenter will use PDFLATEX instead of LATEX. If you
have selected LaTeX => PS, then TeXnicCenter will use LATEX followed by dvips
(as in Figure 3.25). The dvips messages will follow on from the LATEX messages.
(If you selected the BibTeX or MakeIndex features when you initialised the project,
Figure 3.21, then TeXnicCenter will also use the BibTEX and MakeIndex applica-
tions.)

To view the document, click the View Output button . (Note that if you have
selected LaTeX => PDF or LaTeX => PS you will need Adobe Acrobat or GSView,
respectively, to view the output file.)

If there are any errors, you can select Build → Next Error and it will show you
where the error has occured (See Figure 3.26). If you do have any errors, check
Chapter 13.

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 27

Figure 3.25: TeXnicCenter (using LATEX and dvips)

Figure 3.26: TeXnicCenter — Showing Error

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 28

3.3 WinEdt

WinEdt (not to be confused with WinEdit which is a completely different applica-
tion) is an application that enables you to edit LATEX source code, and simply click
on a button to pass the source code to LATEX, and then click on another button
to view the resulting typeset document. This alieviates the problems encountered
using notepad and the MS-DOS Prompt detailed in Section 3.1.

WinEdt is shareware: it can be downloaded from the TEX Archive [6] in the
systems/win32/winedt directory and evaluated for a trial period of 31 days, after
which, if you want to continue to use it, you must pay the registration fee. Details
of prices and types of licence available can be found at http://www.winedt.com/.
Again, you must have a TEX/LATEX distribution installed before you start. WinEdt
is fairly easy to install. First unpack all the files, and then run the setup.exe ap-
plication. I recommend that you use the default settings. If you have any problems
installing WinEdt, contact your system administrator.

To run WinEdt, select WinEdt from the start menu:
Start → Programs → WinEdt → WinEdt

It should look like Figure 3.27

Figure 3.27: WinEdt

Click on the ‘New Document’ button or select File → New. You can now start
typing your source code into the WinEdt window, as shown in Figure 3.28

You can now save your document using the File → Save as menu. Select the file
type to be TeX, and type in the name of your file, e.g. sample1.tex. See Figure 3.29.

To LATEX your document, simply click on the LATEX button . The output
will appear in an MSDOS Prompt window (see Figure 3.30).

To view your typeset document, click on the “view DVI” button .

You can convert your DVI file to PostScript by clicking the button. If

http://www.tex.ac.uk/tex-archive/systems/win32/winedt/
http://www.winedt.com/

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 29

Figure 3.28: WinEdt

Figure 3.29: WinEdt — Saving the File

CHAPTER 3. FROM SOURCE CODE TO TYPESET OUTPUT 30

Figure 3.30: WinEdt — LATEX Output

you have GSView installed, you can then view the PostScript file by clicking on the

button.
Depending on which version of WinEdt you have installed, there may also be a

PDFLATEX button which you can click on to create a Portable Document Format

(.pdf) document. If not, you can click on the button to open up an MS-DOS
Prompt window6, and you can use the commands listed on page 19.

6WinEdt should automatically set the correct directory, so you shouldn’t need to worry about
changing directory

Chapter 4

Creating a Simple Document

Let’s now look at how to actually write the source code. The very first line of any
document that you create must have the command:

\documentclass[option-list]{class-name} Definition

This tells LATEX what type of document you want to create (e.g. an article, a techni-
cal report, correspondence). The \documentclass command takes one mandatory
argument class-name that specifies the class file. There are a great many avail-
able, but the basic ones are: article (short documents without chapters), report
(longer technical documents containing chapters), book (for writing books), letter
(for writing correspondence) and slides (for creating slides for use with OHP or
data projectors).

We’ll be starting with a very simple document, so let’s use the article class
file. In this case the very first line of the source code should be:

\documentclass{article}

The \documentclass command also takes an optional argument option-list which
should be a comma separated list of options to be passed to the class file. This
allows you to override the class file defaults. For example, the article class file by
default uses US letter paper, but in the UK we would want to use A4. This can be
achieved using the option a4paper. So you would need to edit the above line to:

\documentclass[a4paper]{article}

Let’s change another option. The normal font size is 10pt by default, but we have
the option to change it to 11pt or 12pt, so let’s change it to 11pt:

\documentclass[a4paper,11pt]{article}

You can also change your document so that it is in a two column format using the
twocolumn option:

\documentclass[a4paper,11pt,twocolumn]{article}

Note that there must not be any spaces between the options.
After deciding what type of document we want, we now need to specify the

contents of the document. We do this in a document environment. The document
is started with the command:

\begin{document}

and ended with

\end{document}

So our source code now looks like:

31

CHAPTER 4. CREATING A SIMPLE DOCUMENT 32

↑Code

\documentclass[a4paper,11pt]{article}

\begin{document}

\end{document}

↓Code

Every document you create must have this form. You can’t simply start typing the
contents of the document. You must firstly specify your class file, and then place
the contents of the document inside the document environment. It is a common
mistake when first starting out to miss out one or more of these three lines.

So far so good, but at the moment we have an empty document, so we won’t
get any output. Let’s now put some text into our document:

↑Code

\documentclass[a4paper,11pt]{article}

\begin{document}

This is a simple document.
Here is the first paragraph.

Here is the second paragraph. As you
can see it’s
a very
short document.

\end{document}

↓Code

Exercise 1 (Simple Document)

Try typing the above code into your editor (see Chapter 3 if you can’t remember
what to do.) You can also download a copy of this file, but I would recommend that
you try typing it in to give yourself some practice. If you are using TeXnicCenter,
start a new project as detailed on page 21. Call your project, say, sample1.

Things to note while you are typing: Firstly, when you press the return character
at the end of the line this end of line character is converted into a space in the output
file. So the fact that I have some very ragged lines in my source code has no effect
on the final result.

Secondly, multiple spaces are converted into a single space, so the large gap
between the words can and see is no different from having a single space.

Thirdly, a completely blank line will be converted into a paragraph break, but
that doesn’t mean that you’ll have a blank line between your paragraphs in the
output. In fact, by default you won’t with most class files, although you can override
this.

Fourthly, you don’t need to worry about the indentation at the start of new
paragraphs as this is done automatically (again it is possible to override paragraph
indentation, or change the indentation length.)

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/simpledoc.tex

CHAPTER 4. CREATING A SIMPLE DOCUMENT 33

Once you have typed up your source code, save your file as, say, sample1.tex
(or just click on the save icon if you are using TeXnicCenter) and then pass it to
LATEX (either by typing latex sample1.tex in the MS-DOS Prompt, or by clicking
on the LATEX icon in WinEdt, or by clicking on the build icon in TeXnicCenter as
detailed in Chapter 3.) If all goes well, you should see something that looks like the
following displayed on the screen:

This is TeX, Version 3.14159 (MikTeX 2.1)
(sample1.tex
LaTeX2e <2000/06/01>
Babel <v3.7h> and hyphenation patterns for american, french, german,
ngerman, italian, nohyphenation, loaded.
(C:\texmf\tex\latex\base\article.cls
Document Class: article 2000/05/19 v1.4b Standard LaTeX document class
(C:\texmf\tex\latex\base\size11.clo))
No file sample1.aux.
[1] (sample1.aux))
Output written on sample1.dvi (1 page, 376 bytes).
Transcript written on sample1.log.

This indicates that your source code has successfully been converted into the typeset
output contained in the new file sample1.dvi. You can now view this document
either by typing yap sample1.dvi in the MS-DOS Prompt, or by clicking on the
view output button in TeXnicCenter or the view DVI button in WinEdt.

If you have made a mistake in the source code, an error message will be displayed
on screen, and the question mark prompt will appear. At this point you can either
type h for a help message, or type x to exit LATEX and go back to your source code
and fix the problem1. If you do have an error, consult the list of common mistakes
in Chapter 13 for guidance.

4.1 Using Simple Commands

Now let’s try adding a few simple commands to our document. The command
\LaTeX produces the logo LATEX and the command \today prints the current date.
LATEX always ignores any spaces that follow a command name, as it uses the space
to indicate the end of the command name. This means that if we want a space to
occur immediately after the command, we would need to explicitly say so using the
command \ where indicates a space character. Let’s also try using a command
that takes an argument. The command

\footnote{text} Definition

takes one argument that specifies the text that should appear in the footnote. This
command should be placed where you want the footnote marker to appear.

Exercise 2 (Using Simple Commands)

Try editing the document you created in Exercise 1, so that it looks like the
following: (You can download it if you like, but again it is better if you try typing
it in yourself)

1TeXnicCenter is non-interactive, it will carry on going until it gets to the end. Once it has
finished you can locate each error as described on page 26.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/simple.tex

CHAPTER 4. CREATING A SIMPLE DOCUMENT 34

↑Code

\documentclass[a4paper,11pt]{article}

\begin{document}

This is a simple \LaTeX\ document.
Here is the first paragraph.

Here is the second paragraph. As you
can see it’s
a very
short document\footnote{with a footnote}.
This document was created on: \today.

\end{document}

↓Code

Now LATEX your document and view the result. (Remember to check the list of
common errors in Chapter 13 if you have a problem.) You should see the LATEX
logo, the footnote marker and the current date. If you scroll down to the bottom
of the page, you should see the footnote.

4.2 Special Characters and Symbols

You can use any of the standard characters that you find on your keyboard, except
the following 10 symbols:

{ } % & $ # ^ ~ \

These symbols may only occur in LATEX commands. We have already used the curly
braces { and }. The percent symbol % is a comment character. Everything from
the percent symbol up to the end of line is ignored by LATEX. This means you can
have comments in your source code to remind you what a particular part of your
code is doing. You have also used the backslash symbol \ which indicates that you
are using a LATEX command, as in \LaTeX or \today. The meaning of the other
special characters will be covered later.

So what do you do if you want one of these symbols to actually appear in
your document? Table 4.1 lists commands that produce these and other symbols.
(The symbol ‘ is the backtick symbol, as opposed to the apostrope symbol ’. The
backtick symbol usually looks like ` on a keyboard, and on most UK keyboards
it is situated to the left of the 1 key. The opening double quote is created using
two adjacent backtick symbols, and the closing double quote is created using two
adjacent apostrope symbols, this gives 66 and 99 style quotes, which you wouldn’t
get using the double quote character.)

Ligatures and special symbols are shown in Table 4.2. (Note that, as mentioned
in the Introduction, the f-ligatures are automatically converted.) When using a
command in the middle of a word, take care that the command doesn’t run into the
rest of the word. For example, the British spelling of the word “manœuvre” has an
œ-ligature in the middle of it. There are several ways to code this in LATEX:

CHAPTER 4. CREATING A SIMPLE DOCUMENT 35

Table 4.1: Symbols

\textbackslash \ _ \P ¶ - -
\textasciicircum ˆ \$ $ \S § -- –
\textasciitilde ˜ \{ { \ldots . . . --- —
\pounds £ \} } \dag † ?‘ ¿
\textregistered r© \# # \ddag ‡ !‘ ¡
\texttrademark TM \% % ’ ’ ’’ ”
\copyright c© \& & ‘ ‘ ‘‘ “
\yen U \i ı \j

1. Group the command:

man{\oe}uvre Input

2. Place a space after the command:

man\oe uvre Input

3. Place an empty brace after the command:

man\oe{}uvre Input

Each of these three methods produce the same result, but I personally prefer the
first method. It is important to make your source code as easy to read as possible,
as you may need to edit your document; the first of the above three examples
retains the look of a complete word, whereas the second example fragments the
word, so although the word is whole in the output, it doesn’t read right when
you’re editing your code. The third example, like the first example, maintains the
word’s cohesion, but it gives the incorrect impression that the command \oe has
an argument. However, as I mentioned, this is my personal preference, you should
use whichever method you feel most comfortable with, just as long as you don’t do
the following:

man\oeuvre

This is incorrect, as LATEX will interpret it as the command \oeuvre which doesn’t
exist.

Accented letters are created by specifying which accent you want, and what
letter to put the accent on. The accent commands are listed in Table 4.3, and each
command takes one mandatory argument. The command indicates what accent to
use, the argument indicates what letter to put the accent on. You may have noticed
in Table 4.1 the commands \i and \j which produce a dotless i and j (ı and). You
should use these instead of i and j as the argument to an accent command, since
i and j should loose their dot when they have an accent over them. Example:

CHAPTER 4. CREATING A SIMPLE DOCUMENT 36

Table 4.2: Ligatures and Special Symbols

AE Æ ae æ OE Œ oe œ
fi fi ffi ffi fl fl ffl ffl
AA Å aa å L L l l
O Ø o ø SS SS ss ß

Table 4.3: Accent Commands

Example Example
Definition Input Output Definition Input Output
\’{object} \’{c} ć \={object} \={c} c̄
\‘{object} \‘{c} c̀ \.{object} \.{c} ċ
\^{object} \^{c} ĉ \~{object} \~{c} c̃
\"{object} \"{c} c̈ \v{object} \v{c} č
\u{object} \u{c} c̆ \H{object} \H{c} c̋
\t{object} \t{cc} �cc \c{object} \c{c} ç
\d{object} \d{c} c. \b{object} \b{c} c

¯

↑Input

It’s na\"{\i}ve to think that eating mouldy p\^{a}t\’{e}
won’t result in food poisoning.

↓Input

↑Output

It’s näıve to think that eating mouldy pâté won’t result in food poisoning.
↓Output

Exercise 3 (Using Special Characters)

Start a new file (or project if using TeXnicCenter), and see if you can write the
source code to create the following output:

↑Output

Item #1: Our travel expenditure came to $2000.00 & our equipment expenditure
came to £100.00 plus VAT @ 17.5%.

↓Output

You can download or view the source code if you can’t work out how to do
it, and remember to check the list of common errors in Chapter 13 if you have a
problem.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/spchar.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/spchar.html

CHAPTER 4. CREATING A SIMPLE DOCUMENT 37

4.3 Lists

Now you’ve had a go at using some commands, let’s use some environments. A good
example of environments are the list making environments. There are three basic
list making environments: itemize (for unordered lists), enumerate (for ordered
lists) and description (for lists where you want to specify your own label.)

In each of these environments, there is a command

\item[label] Definition

which you need to use to specify each item of the list.

4.3.1 Unordered Lists

Unordered lists are created using the itemize environment. For example, the fol-
lowing code:

↑Input

\begin{itemize}
\item Animal
\item Vegetable
\item Mineral
\end{itemize}

↓Input

will produce the following output:

↑Output

• Animal

• Vegetable

• Mineral

↓Output

It is also possible to nest itemize environments. For example, the following
code:

↑Input

\begin{itemize}
\item Animal
\begin{itemize}
\item Mammals
\item Birds
\item Reptiles. For example:
\begin{itemize}
\item dinosaurs
\item crocodiles
\end{itemize}
\end{itemize}
\item Vegetable
\begin{itemize}
\item Cultivated

CHAPTER 4. CREATING A SIMPLE DOCUMENT 38

\item Wild
\end{itemize}
\item Mineral
\end{itemize}

↓Input

will produce the following output:

↑Output

• Animal

– Mammals

– Birds

– Reptiles. For example:

∗ dinosaurs
∗ crocodiles

• Vegetable

– Cultivated

– Wild

• Mineral

↓Output

That looks good, but our code is a bit cramped and a little difficult to read.
Blank lines between list items are ignored by LATEX, and multiple spaces are treated
as a single space, so we could make the code a bit more readable, without affecting
the final result:

↑Input

\begin{itemize}

\item Animal

\begin{itemize}

\item Mammals

\item Birds

\item Reptiles. For example:
\begin{itemize}

\item dinosaurs

\item crocodiles

\end{itemize}

\end{itemize}

CHAPTER 4. CREATING A SIMPLE DOCUMENT 39

\item Vegetable

\begin{itemize}

\item Cultivated

\item Wild

\end{itemize}

\item Mineral

\end{itemize}
↓Input

It’s now a little easier to see which \begin{itemize} matches up with the
corresponding \end{itemize}.

4.3.2 Ordered Lists

Ordered lists are created using the enumerate environment. It has exactly the same
format as the itemize environment described in the previous section.

We can use the same example as before, only this time use enumerate instead
of itemize.

↑Input

\begin{enumerate}
\item Animal
\item Vegetable
\item Mineral
\end{enumerate}

↓Input

The above input will produce the following output:

↑Output

1. Animal

2. Vegetable

3. Mineral

↓Output

Again, the environments can be nested:

↑Input

\begin{enumerate}

\item Animal

\begin{enumerate}

CHAPTER 4. CREATING A SIMPLE DOCUMENT 40

\item Mammals

\item Birds

\item Reptiles. For example:
\begin{enumerate}

\item dinosaurs

\item crocodiles

\end{enumerate}

\end{enumerate}

\item Vegetable

\begin{enumerate}

\item Cultivated

\item Wild

\end{enumerate}

\item Mineral

\end{enumerate}
↓Input

The above input will produce the following output:

↑Output

1. Animal

(a) Mammals

(b) Birds

(c) Reptiles. For example:

i. dinosaurs
ii. crocodiles

2. Vegetable

(a) Cultivated

(b) Wild

3. Mineral

↓Output

CHAPTER 4. CREATING A SIMPLE DOCUMENT 41

4.3.3 Description Environment

The description environment has exactly the same format as the itemize envi-
ronment described in Section 4.3.1, only this time you need to specify a label as an
optional argument to the \item command. For example, the following code:

↑Input

\begin{description}
\item[Animal] Living being
\item[Vegetable] Plant
\item[Mineral] Natural inorganic substance
\end{description}

↓Input

will produce the following output:

↑Output

Animal Living being

Vegetable Plant

Mineral Natural inorganic substance

↓Output

It is possible to nest all the listing environments:

↑Input

\begin{description}

\item[Animal] Living being

\begin{itemize}

\item Mammals

\item Birds

\item Reptiles. For example:
\begin{enumerate}

\item dinosaurs

\item crocodiles

\end{enumerate}

\end{itemize}

\item[Vegetable] Plant

\begin{itemize}

\item Cultivated

CHAPTER 4. CREATING A SIMPLE DOCUMENT 42

\item Wild

\end{itemize}

\item[Mineral] Natural inorganic substance

\end{description}
↓Input

The above input will produce the output:

↑Output

Animal Living being

• Mammals
• Birds
• Reptiles. For example:

1. dinosaurs
2. crocodiles

Vegetable Plant

• Cultivated
• Wild

Mineral Natural inorganic substance
↓Output

Exercise 4 (Lists)

Try writing the source code that will create the following output:

↑Output

Village A small collection of dwelling places. Examples:

1. Marlingford
2. Saxlingham

Town A large collection of dwelling places. Examples:

1. Great Yarmouth
2. Beccles

City A large town, usually containing a cathedral. Examples:

1. Norwich
2. Birmingham
3. London

↓Output

You can download or view the answer if you can’t work out how to do it.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/lists.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/lists.html

CHAPTER 4. CREATING A SIMPLE DOCUMENT 43

4.4 Simple font changing commands

There are two basic ways of changing fonts: you can either change the font for
a small selection of text, for example, if you want to emphasize a word, or you
may wish to change the font “from this point onwards”. The commands shown in
Table 4.4 are of the first type, whereas those shown in Table 4.5 are of the second
type — a declaration.

Table 4.4: Font changing commands

Command Example Input Corresponding output
\textrm{text} \textrm{roman} text roman text
\textsf{text} \textsf{sans serif} text sans serif text
\texttt{text} \texttt{typewriter} text typewriter text

\textmd{text} \textmd{medium} text medium text
\textbf{text} \textbf{bold} text bold text

\textup{text} \textup{upright} text upright text
\textit{text} \textit{italic} text italic text
\textsl{text} \textsl{slanted} text slanted text

\textsc{text} \textsc{Small Caps} text Small Caps text
\emph{text} \emph{emphasized} text emphasized text

\textnormal{text} \textnormal{default} text default text

Table 4.5: Font changing declarations

Declaration Example Input Corresponding output
\rmfamily \rmfamily roman text roman text
\sffamily \sffamily sans serif text sans serif text
\ttfamily \ttfamily typewriter text typewriter text

\mdseries \mdseries medium text medium text
\bfseries \bfseries bold text bold text

\upshape \upshape upright text upright text
\itshape \itshape italic text italic text
\slshape \slshape slanted text slanted text
\scshape \scshape Small Caps text Small Caps text

\em \em emphasized text emphasized text

\normalfont \normalfont default text default text

The size of the font is changed using one of the declarations shown in Table 4.6.
The sizes are all relative to the size of the normal font. So if you decide to change the
normal font from, say, 11pt to 12pt (by changing the class file option as mentioned
on page 31), all the font sizes will be changed relative to the new size.

Environments can be used instead. Each environment has the same name as its
corresponding declaration, but without the preceeding backslash. Example:

↑Input

\begin{itshape} Some italic text.
\begin{Large}
This text is large.

CHAPTER 4. CREATING A SIMPLE DOCUMENT 44

Table 4.6: Font size changing declarations

Declaration Example Input Corresponding output
\tiny \tiny tiny text tiny text

\scriptsize \scriptsize script sized text script sized text

\footnotesize \footnotesize footnote sized text footnote sized text

\small \small small text small text

\normalsize \normalsize normal sized text normal sized text
\large \large large text large text
\Large \Large even larger even larger
\LARGE \LARGE larger still larger still
\huge \huge huge huge
\Huge \Huge really huge really huge

\end{Large}
\end{itshape} Back to normal.

↓Input

Output:

Some italic text. This text is large. Back to normal. Output

Note that the command \emph, the declaration \em and the environment em
behave slightly differently to the corresponding \textit command, \itshape dec-
laration and itshape environment. The latter simply use an italic font, whereas the
former will toggle between italic and upright. So if the surrounding font is upright
then \emph, \em and em will use the italic font, but if the surrounding font is italic,
\emph, \em and em will use an upright font. This is particularly useful in abstracts
where the abstract font varies between class files. It is recommended that if your
intention is to emphasize something, you should use \emph etc rather than \textit
etc.

For more information on using fonts, including using fonts not covered in this
document, see A Guide to LATEX [2] or The LATEX Companion [3].

Exercise 5 (Fonts)

Go back to the document you created in Exercise 1 and change the first para-
graph to a large bold font and the second paragraph to normal size italic. Emphasize
the words “simple” and “short”. (Again, you can download or view the solution.)

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/fonts.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/fonts.html

Chapter 5

Creating Chapters, Sections
etc

Let’s go back to the document we created in Exercise 2. In this chapter we shall
modify this document step by step until we have a fully fledged document with title,
abstract, table of contents, sections etc.

5.1 Author and title information

The term “title page” is used to indicate the author, title and date information
that can either appear on the front cover by itself or along the top of the first
page of text. In order to do this, you must first specify the information. Once this
information has been specified it can then be displayed.

The author, title and date are entered using the commands:

\author{author names}
\title{title text}
\date{document date}

Definition

These commands only store information, they don’t actually display anything.
Once you have used these commands, you can then display the information using
the command:

\maketitle Definition

Note that if you don’t use the \date command, the current date will be inserted.
If you want no date to appear, you need to specify an empty argument:

\date{} Input

Exercise 6 (Creating Title Pages)

Try editing the document you created in Exercise 2 to include title information.
Modifications are illustrated like this:

↑Code

\documentclass[a4paper,11pt]{article}

45

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 46

\begin{document}

\title{A Simple Document}
\author{Me}

\maketitle

This is a simple \LaTeX\ document.
Here is the first paragraph.

Here is the second paragraph. As you can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today.

\end{document}
↓Code

You can download this document.

5.2 Abstract

The abstract environment is used to create an abstract for the document. The
way in which the abstract is formatted depends on the class file. The report class
file will put the abstract on a page by itself, some class files will indent the abstract
and some will typeset the abstract in italic. Note also that some class files (such as
book and letter) don’t have an abstract environment. Abstracts traditionally go
at the start of the document after the title, so the abstract environment should
go after the \maketitle command.

Exercise 7 (Creating an Abstract)

Try editing your document so that it has an abstract: Modifications are illus-
trated like this:

↑Code

\documentclass[a4paper,11pt]{article}

\begin{document}

\title{A Simple Document}
\author{Me}

\maketitle

\begin{abstract}
A brief document to illustrate how to use \LaTeX.
\end{abstract}

This is a simple \LaTeX\ document.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/title.tex

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 47

Here is the first paragraph.

Here is the second paragraph. As you can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today.

\end{document}
↓Code

You can download this document.

5.3 Sections, Subsections . . .

Chapters, sections, subsections etc can be inserted using the commands:

\part[short title]{title}
\chapter[short title]{title}
\section[short title]{title}
\subsection[short title]{title}
\subsubsection[short title]{title}
\paragraph[short title]{title}
\subparagraph[short title]{title}

Definition

Note that the availablity of these commands depends on the class file you are
using. For example, the article class file that we have been using is designed for
short articles, so the \chapter command is not defined in the article class file,
whereas it is defined in the report class file.

Each of the commands above have a mandatory argument title and an optional
argument short title. The mandatory argument title is simply the title of the chap-
ter/section/subsection etc. For example:

\section{Introduction} Input

If you are using the article class file, the output will look like:

1 Introduction Output

Note that you don’t specify the section number as LATEX does this automatically.
This means that you can insert a new section or chapter or swap sections around or
even change a section to a subsection etc, without having to worry about updating
all the section numbers.

If you are using a class file that contains chapters as well as sections, the section
number will depend on the chapter. So, for example, if the current section is the
4th section of chapter 5, the section number will be 5.4 (Note that if you are using a
class file where the section number depends on the chapter number, you must have
a \chapter command before your first \section command, otherwise your section
numbers will come out as 0.1, 0.2 etc).

Unnumbered chapters/sections etc are produced by placing an asterisk * after
the command name. For example:

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/abstr.tex

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 48

\chapter*{Acknowledgements} Input

You can switch to appendices using the command

\appendix Definition

then continue using \chapter, \section etc. For example (using the report class
file):

↑Input

\appendix
\chapter{Derivations}
Some derivations.

\chapter{Tables}
Some tables.

↓Input

Exercise 8 (Creating Chapters, Sections etc)

Let’s try editing our document so that it now has chapters, sections etc. Since the
article class file doesn’t have chapters, let’s change to the report class. Changes
from our previous document are shown like this.

↑Code

\documentclass[a4paper,11pt]{report}

\begin{document}

\title{A Simple Document}
\author{Me}

\maketitle

\begin{abstract}
A brief document to illustrate how to use \LaTeX.
\end{abstract}

\chapter{Introduction}
\section{The First Section}

This is a simple \LaTeX\ document.
Here is the first paragraph.

\section{The Next Section}

Here is the second paragraph. As you can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today.

\chapter{Another Chapter}

Here’s another very interesting chapter.
We’re going to put a picture here later.

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 49

\chapter*{Acknowledgements}

I would like to acknowledge all those
very helpful people who have assisted me in my work.

\appendix
\chapter{Tables}
We’re going to put some tables here later.

\end{document}

↓Code

(You can download a copy of this file if you like, but I would recommend that you
try editing the file yourself to give you practice.)

5.4 Creating a Table of Contents

Once you have all your \chapter, \section etc commands, you can create a table
of contents with the command

\tableofcontents Definition

This command should go where you want your table of contents to appear (usually
after \maketitle).

You may recall from the previous section that the sectioning commands all had
an optional argument short title. If your chapter or section title is particularly
long, you can use short title to specify a shorter title that should go in the table of
contents. The longer title (given by the other argument title) will still appear in
the section heading in the main part of the document.

LATEX processes all source code sequentially, so when it first encounters the
\tableofcontents command, it doesn’t yet know anything about the chapters,
sections etc. So the first time the document is LATEXed the necessary information
is written to the .toc file. The subsequent pass reads the information in from the
.toc file, and generates the table of contents.

Exercise 9 (Creating a Table of Contents)

Try modifying your document so that it has a table of contents. Modifications
from the previous exercise are illustrated like this:

↑Code

\documentclass[a4paper,11pt]{report}

\begin{document}

\title{A Simple Document}
\author{Me}

\maketitle

\tableofcontents

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/section.tex

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 50

\begin{abstract}
A brief document to illustrate how to use \LaTeX.
\end{abstract}

\chapter{Introduction}

\section{The First Section}

This is a simple \LaTeX\ document. Here is the first paragraph.

\section{The Next Section}

Here is the second paragraph. As you can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today.

\chapter{Another Chapter}

Here’s another very interesting chapter.
We’re going to put a picture here later.

\chapter*{Acknowledgements}

I would like to acknowledge all those
very helpful people who have assisted
me in my work.

\appendix
\chapter{Tables}

We’re going to put some tables here later.

\end{document}

↓Code

If your table of contents doesn’t come out right, try LATEXing it again. (Again,
you can download this file.)

5.5 Cross-Referencing

We have already seen that LATEX takes care of all the numbering for the chapters
etc, but what happens if you want to refer to a chapter or section? There’s no point
leaving LATEX to automatically generate the section numbers if you have to keep a
track of them all, and change all your cross-references every time you add a new
section. Fortunately LATEX provides a way to generate the correct number, all you
have to do is label the part of the document you want to reference, and then refer
to this label when you want to cross-reference it. LATEX will then determine the
correct number that needs to be inserted at that point.

The first part, labelling the place you want to reference, is done using the com-
mand:

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/toc.tex

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 51

\label{string} Definition

The argument string should be a unique textual label. This label can be anything
you like as long as it is unique, but it is recommended that it isn’t too long or you
may use up too much memory. People tend to have their own conventions for
labelling. I usually start the label with two or three letters that signify what type
of thing I’m labelling. For example, if I’m labelling a chapter I’ll start with ch, if
I’m labelling a section I’ll start with sec. Example:

↑Input

\chapter{Introduction}
\label{ch:intro}

↓Input

Another example:

↑Input

\section{Technical Details}
\label{sec:details}

↓Input

Note that the \label command doesn’t produce any text, it simply assigns a
label. You can now refer to that object using the command:

\ref{string} Definition

Example:

↑Input

See Section \ref{sec:results} for an anaylsis
of the results.

↓Input

It is a typographical convention that you should never start a new line with a
number. For example, if you have the text “Chapter 1” the “1” must be on the
same line as the “Chapter”. We can do this by using an “unbreakable” space, which
will put a space but won’t allow LATEX to break the line at that point. This is done
using the ~ special character, so the example above should actually be:

↑Input

See Section~\ref{sec:results} for an anaylsis
of the results.

↓Input

The \pageref{string} command will insert the page number that the label
appeared on. Example:

↑Input

See Chapter~\ref{ch:def} on
page~\pageref{ch:def} for a list of definitions.

↓Input

The label ch:def obviously needs to be defined somewhere:

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 52

↑Input

\chapter{Definitions}
\label{ch:def}

↓Input

In fact, I have done this in my source code for this document, so the above
example would look like:

See Chapter 2 on page 4 for a list of definitions. Output

It’s not just chapters and sections that you can reference, most of the numbers
that LATEX automatically generates can be cross-referenced. The enumerate en-
vironment described in Section 4.3.2 automatically numbers the items within an
ordered list, so it’s possible to label list items. For example:

↑Input

\begin{enumerate}

\item\label{itm:edit} Write or edit source code.

\item Pass source code to the \LaTeX\ application
(‘‘\LaTeX\ the document’’).

\begin{itemize}

\item If there are any error messages,
return to Step~\ref{itm:edit}.

\item If there are no error messages, a DVI file
is created, go to Step~\ref{itm:view}.

\end{itemize}

\item\label{itm:view} View DVI file to check the result.

\end{enumerate}
↓Input

Output:

↑Output

1. Write or edit source code.

2. Pass source code to the LATEX application (“LATEX the document”).

• If there are any error messages, return to Step 1.

• If there are no error messages, a DVI file is created, go to Step 3.

3. View DVI file to check the result.

↓Output

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 53

The \ref and \pageref commands may come before or after the corresponding
\label command. As with the table of contents, LATEX first writes out all the cross-
referencing information to another file (the auxiliary .aux file), and then reads it
in the next time, so you will need to LATEX your document twice to get everything
up-to-date.

If the references aren’t up-to-date, you will see the following message at the end
of the LATEX run:

LaTeX Warning: Label(s) may have changed.
Rerun to get cross-references right.

The following warning

LaTeX Warning: There were undefined references.

means that LATEX found a reference to a label that does not appear in the auxiliary
file. This could mean that it’s a new label, and the warning will go away the next
time you LATEX your document, or it could mean that either you’ve forgotten to
define your label with the \label command, or you’ve simply misspelt the label.

Very occasionally, if you have cross-references and a table of contents, you might
have to LATEX your document three times to get everything up to date. Just check
to see if the Label(s) may have changed warning appears.

If you have an undefined reference, LATEX will replace the reference number
with two question marks ?? in the output. If this happens, check to see if the above
warnings have occured.

Exercise 10 (Cross-Referencing)

Try modifying your code so that it has cross-references. Again, changes made
from the previous document are illustrated like this:

↑Code

\documentclass[a4paper,11pt]{report}

\begin{document}

\title{A Simple Document}
\author{Me}

\maketitle

\tableofcontents

\begin{abstract}
A brief document to illustrate how to use \LaTeX.
\end{abstract}

\chapter{Introduction}
\label{ch:intro}

\section{The First Section}

This is a simple \LaTeX\ document. Here is the first paragraph.
The next chapter is Chapter~\ref{ch:another}
and is on page~\pageref{ch:another}.

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 54

The next section is Section~\ref{sec:next}.

\section{The Next Section}
\label{sec:next}

Here is the second paragraph. As you can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today.

\chapter{Another Chapter}
\label{ch:another}

Here’s another very interesting chapter.
We’re going to put a picture here later.
See Chapter~\ref{ch:intro} for an
introduction.

\chapter*{Acknowledgements}

I would like to acknowledge all those
very helpful people who have assisted
me in my work.

\appendix
\chapter{Tables}

We’re going to put some tables here later.
\end{document}

↓Code

(You can download a copy of this file.)

5.6 Creating a Bibliography

Bibliographies can be created using the thebibliography environment. This en-
vironment is very similar to the list making environments described in Section 4.3,
but instead of \item use

\bibitem[label]{key} Definition

where key is a unique keyword that identifies this item. Your keyword can be
anything you like, but as with \label I would recommend that you use a short
memorable keyword. I tend to use the first author’s surname followed by the year
of publication. Example:

↑Input

\begin{thebibliography}{1}
\bibitem{lamport94} ‘‘\LaTeX\ : a document preparation
system’’, Leslie Lamport, 2nd edition (updated for
\LaTeX2e), Addison-Wesley (1994).

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/crossref.tex

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 55

\bibitem{kopka95} ‘‘A Guide to \LaTeX2e: document
preparation for beginners and advanced users’’,
Helmut Kopka and Patrick W. Daly, Addison-Wesley (1995).

\bibitem{goossens94} ‘‘The \LaTeX\ Companion’’,
Michel Goossens, Frank Mittelbach and
Alexander Samarin, Addison-Wesley, (1994).

\end{thebibliography}
↓Input

Output:

↑Output

References

[1] “LATEX : a document preparation system”, Leslie Lamport, 2nd edition
(updated for LATEX2e), Addison-Wesley (1994).

[2] “A Guide to LATEX2e: document preparation for beginners and advanced
users”, Helmut Kopka and Patrick W. Daly, Addison-Wesley (1995).

[3] “The LATEX Companion”, Michel Goossens, Frank Mittelbach and Alexander
Samarin, Addison-Wesley, (1994).

↓Output

You can cite an item in your bibliography with the command

\cite[text]{key list} Definition

Example:

↑Input
For more information about writing bibliographies see
Goossens \emph{et al.}~\cite{goossens94}.

↓Input

Output:

For more information about writing bibliographies see Goossens et al. [3]. Output

If you want to cite multiple works, use a comma-separated list: Example:

↑Input
For more information about writing bibliographies
see~\cite{kopka95,goossens94}.

↓Input

Output:

For more information about writing bibliographies see [2, 3]. Output

The optional argument text to the \cite command can be used to add text to the
citation. Example:

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 56

↑Input

For more information about writing bibliographies see
Goossens \emph{et al.}~\cite[Chapter~13]{goossens94}.

↓Input

Output:

↑Output

For more information about writing bibliographies see Goossens et al. [3, Chap-
ter 13].

↓Output

The thebibliography environment has a mandatory argument:

\begin{thebibliography}{widest entry} Definition

The argument widest entry is the widest label in the list of entries. This helps
LATEX to align the references correctly. In the example above, the labels appeared
as: [1], [2] and [3], but they can be changed using the optional argument to the
\bibitem command. In the above example, the labels were all the same width
so the argument {1} was used (although {2} and {3} could just have easily been
used). Consider the following example:

↑Input

\begin{thebibliography}{Goossens 1994}
\bibitem[Lamport 1994]{lamport94} ‘‘\LaTeX\ : a document
preparation system’’, Leslie Lamport, 2nd edition
(updated for \LaTeX2e), Addison-Wesley (1994).

\bibitem[Kopka 1995]{kopka95} ‘‘A Guide to \LaTeX2e: document
preparation for beginners and advanced users’’, Helmut Kopka
and Patrick W. Daly, Addison-Wesley (1995).

\bibitem[Goossens 1994]{goossens94} ‘‘The \LaTeX\ Companion’’,
Michel Goossens, Frank Mittelbach and
Alexander Samarin, Addison-Wesley, (1994).

\end{thebibliography}
↓Input

Output:

↑Output

References

[Lamport 1994] “LATEX : a document preparation system”, Leslie Lamport,
2nd edition (updated for LATEX2e), Addison-Wesley (1994).

[Kopka 1995] “A Guide to LATEX2e: document preparation for beginners and
advanced users”, Helmut Kopka and Patrick W. Daly, Addison-
Wesley (1995).

[Goossens 1994] “The LATEX Companion”, Michel Goossens, Frank Mittelbach
and Alexander Samarin, Addison-Wesley, (1994).

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 57

↓Output

In this example, the widest label is [Goossens 1994] so it is chosen to be the
argument of the thebibliography environment:

\begin{thebibliography}{Goossens 1994} Input

There is an application called BibTEX that can be used in conjunction with
LATEX to help generate bibliographies. This document does not cover BibTEX,
but if you are interested I would recommend reading A Guide to LATEX [2] or The
LATEX Companion [3]. For those of you who want a quick look on-line, the document
Using LATEX to Write a PhD Thesis1 has a section containing a brief introduction
to BibTEX.

Exercise 11 (Creating a Bibliography)

Try added the following chapter to your document:

↑Input
\chapter{Recommended Reading}

For a basic introduction to \LaTeX\ see Lamport~\cite{lamport94}.
For more detailed information about \LaTeX\ and
associated applications, consult Kopka and Daly~\cite{kopka95}
or Goossens \emph{et al}~\cite{goossens94}.

↓Input

and also add the bibliography shown above to the end of your document. You can
download or view the solution, but have a go by yourself first. Remember that, as
before, you will need to LATEX the document twice to get the references up-to-date.

5.7 Page Styles and Page Numbering

You may have noticed that the documents you have created have all had their page
numbers automatically inserted at the foot of most of the pages. If you have created
the document that has gradually been modified over the previous few sections, you
may have noticed that the title page has no header or footer, the table of contents
is page 1, the abstract page has no page number, and the page after the abstract
starts at page 1 and continues incrementally onwards from that point. All the page
numbers are Arabic numbers. This can be changed using the command:

\pagenumbering{style} Definition

where style can be one of:

arabic Arabic page numbers (1, 2, 3, . . .)
roman Lowercase Roman numerals (i, ii, iii, . . .)
Roman Uppercase Roman numerals (I, II, III, . . .)
alph Lower case alphabetical characters (a, b, c, . . .)
Alph Upper case alphabetical characters (A, B, C, . . .)

1http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html

http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/biblio.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/biblio.html
http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 58

Traditionally, the front matter (table of contents, list of figures etc) should have
lowercase Roman numeral page numbering, while the main matter should be in
Arabic numerals. Example (using report class file):

↑Input

\author{Me}
\title{A Simple Document}
\maketitle

\pagenumbering{roman}
\tableofcontents

\begin{abstract}
This is the abstract.
\end{abstract}

\pagenumbering{arabic}
\chapter{Introduction}

↓Input

Note that if you don’t have an abstract environment, you will need to do
\clearpage before doing \pagenumbering{arabic}:

↑Input

\author{Me}
\title{A Simple Document}
\maketitle

\pagenumbering{roman}
\tableofcontents

\clearpage\pagenumbering{arabic}
\chapter{Introduction}

↓Input

The headers and footers can be changed using the command

\pagestyle{style} Definition

Individual pages can be changed using

\thispagestyle{style} Definition

Standard styles are:

empty No header or footer.
plain Header empty, page number in footer.
headings Header contains page number and various information,

footer empty.
myheadings Header specified by user, footer empty.

If the myheadings style is used, the header information can be specified using:

\markboth{left head}{right head} Definition

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 59

if the twoside option has been passed to the class file, or

\markright{right head} Definition

if the oneside option has been passed to the class file (default for article and
report).

The report class file uses the empty style for the title and abstract pages and
plain for the first page of each new chapter. By default the remaining pages are
also plain, but these can be changed using the \pagestyle command. This
document uses the headings page style. As you can see the chapter number and
title appear in the top left and the page number appears in the top right of most
pages. The default oneside option was used, so there is no difference between the
formatting of odd and even numbered pages.

The on-screen PDF version of this document uses a page style I defined myself
that incorporates a navigation bar in the footer. (For information on how to do
this, see Creating a PDF Document using PDFLaTeX2.)

Exercise 12 (Page Styles and Page Numbering)

Try editing your document so that the page numbering is lowercase Roman for
the table of contents but Arabic for the main matter. You can try changing the
page style as well, but since the chapters are less than a page each, you won’t see
any effect until we make our chapters a bit bigger. (You can download or view the
edited document.)

5.8 Aligning Material in Rows and Columns

Text can be aligned in rows and columns using the tabular environment.

\begin{tabular}[placement specifier]{column specifiers} Definition

This environment has a mandatory argument column specifiers that specifies how
to align each column. There are three basic specifiers: r (right aligned), l (left
aligned) and c (centred). For example, suppose we want three columns with the
first column left justified and the last two columns centred we would do:

\begin{tabular}{lcc} Input

(Make sure you don’t confuse l (‘ell’) with 1 (one).)
The ampersand character & is used to separate column entries and \\ is used to

separate rows. For example, let’s have two columns, the first left justified and the
second right justified:

↑Input

\begin{tabular}{lr}
Video & 8.99\\
CD & 9.99\\
DVD & 15.00\\
Total & 33.98
\end{tabular}

http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/pagestyle.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/pagestyle.html

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 60

↓Input

Output:

↑Output

Video 8.99
CD 9.99
DVD 15.00
Total 33.98

↓Output

Remember that LATEX ignores multiple spaces, so we could just have easily done:

↑Input

\begin{tabular}{lr}
Video & 8.99\\
CD & 9.99\\
DVD & 15.00\\
Total & 33.98
\end{tabular}

↓Input

and we would still have got the same result.
Entries form implicit grouping, so declarations made within a tabular environ-

ment only have an effect up to the next & or \\. Example:

↑Input

\begin{tabular}{lr}
Video & 8.99\\
CD & 9.99\\
DVD & 15.00\\
\bfseries Total & 33.98
\end{tabular}

↓Input

Output:

↑Output

Video 8.99
CD 9.99
DVD 15.00
Total 33.98

↓Output

Let’s add an extra column and a header row:

↑Input

\begin{tabular}{lrr}
Item & ex VAT & inc VAT\\
Video & 8.99 & 10.56\\
CD & 9.99 & 11.74\\
DVD & 15.00 & 17.63\\
\bfseries Total & 33.98 & 39.93
\end{tabular}

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 61

↓Input

Output:

↑Output

Item ex VAT inc VAT
Video 8.99 10.56
CD 9.99 11.74
DVD 15.00 17.63
Total 33.98 39.93

↓Output

The command

\multicolumn{cols spanned}{col specifier}{text} Definition

can be used to span several columns. The first argument cols spanned is the number
of columns you want to span, the second argument col specifier indicates how to
align this column spanning entry, the third argument text indicates what should go
in this entry. We can use \multicolumn to modify the previous example as follows:

↑Input

\begin{tabular}{lrr}
& \multicolumn{2}{c}{Price (\pounds)}\\

Item & ex VAT & inc VAT\\
Video & 8.99 & 10.56\\
CD & 9.99 & 11.74\\
DVD & 15.00 & 17.63\\
\bfseries Total & 33.98 & 39.93
\end{tabular}

↓Input

Output:

↑Output

Price (£)
Item ex VAT inc VAT
Video 8.99 10.56
CD 9.99 11.74
DVD 15.00 17.63
Total 33.98 39.93

↓Output

In this example we are spanning two columns, so the first argument to \multicolumn
is {2}, we want the entry centred, so the second argument is {c} and the text to
go in this entry is simply {Price (\pounds)}.

The \multicolumn command can also be used to override the alignment of
individual entries. Consider the following example:

↑Input

\begin{tabular}{lrr}
& Year1 & Year2 \\

Travel & 100,000 & 110,000\\

2http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/

http://theoval.cmp.uea.ac.uk/~nlct/latex/pdfdoc/

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 62

Equipment & 50,000 & 60,000
\end{tabular}

↓Input

Output:

↑Output

Year1 Year2
Travel 100,000 110,000
Equipment 50,000 60,000

↓Output

In this example, the headers ‘Year1’ and ‘Year2’ would look better centred, but
the rest of the entries in the second and third columns look best right aligned. We
can use \multicolumn to span just one column, and use the second argument of
\multicolumn to override the column specification:

↑Input

\begin{tabular}{lrr}
& \multicolumn{1}{c}{Year1}
& \multicolumn{1}{c}{Year2} \\

Travel & 100,000 & 110,000\\
Equipment & 50,000 & 60,000
\end{tabular}

↓Input

Output:

↑Output

Year1 Year2
Travel 100,000 110,000
Equipment 50,000 60,000

↓Output

Exercise 13 (Aligning Material)

You may have noticed that the document you have been creating throughout
this chapter has an appendix entitled “Tables”. The tabular environment does
not create a table, but later on in Section 7.2 we’ll see how to turn it into one.
For now, try placing the following tabular environment into the appendix of your
document:

↑Output

Expenditure
Year1 Year2

Travel 100,000 110,000
Equipment 50,000 60,000

↓Output

You can download or view the result.

For more information about using the tabular environment, including how to
add vertical and horizontal lines, see the LATEX user’s guide [1], A Guide to LATEX [2]

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/tabular.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/tabular.html

CHAPTER 5. CREATING CHAPTERS, SECTIONS ETC 63

or The LATEX Companion [3]. The latter reference also describes how to span rows
using the multirow package. For information on how to create coloured tables using
the colortbl package, see The LATEX Graphics Companion [4].

Chapter 6

Packages

Packages are files with the extension .sty that either define new commands or
redefine existing commands. We shall first look at how to use packages already
installed on your system, and then we shall look at how to download and install
new packages.

6.1 Using Packages

LATEX has a great many useful commands, but it doesn’t have a command to do
absolutely everything, so if additional commands are required, they can be supplied
in files called packages. If you want to use any commands or environments that are
defined in a package, you first need to specify the name of the package with the
command:

\usepackage[options]{package name} Definition

where package name is the name of the package without the .sty extention, and
options is a comma separated list of options to be passed to the package (just as
you can do with class files using the \documentclass command.) Note that the
\usepackage command must always go in the preamble.

Let’s look at a couple of examples.

6.1.1 graphicx Package

It is possible to generate images using LATEX commands (See The LATEX Graphics
Companion [4]) however most people find it easier to create a picture in some other
application, and include that file into their LATEX document.

Some applications have an option that allows you to save an image as a PostScript
file1. The graphicx package provides a command that enables you to include this
PostScript file into your document2.

Firstly, you need to specify that you want to use the graphicx package. So you
will need to place the following command in the preamble:

\usepackage{graphicx} Input

1if it doesn’t have this option you can use a PostScript printer driver and print to file. You can
also convert other file types to PostScript using applications such as: pdftops, tiff2ps, pnmtops

2You can also use other file types, such as .pdf or .png, depending on what system you are
using

64

CHAPTER 6. PACKAGES 65

The PostScript file can then be included in your document using the command

\includegraphics[key vals]{filename} Definition

where filename is the name of your PostScript file, and key vals is a comma-separated
list of options that can be used to manipulate the image.

Example: suppose you had a file called shapes.ps, then to include it in your
document you would do:

\includegraphics{shapes.ps} Input

Output:

Output

If you omit the file extension, LATEX will search for a file with the default ex-
tension. If you are using ordinary LATEX, this will usually be .ps, however if you
are using PDFLATEX, this will usually be .pdf. Modifying the above example, we
could do:

\includegraphics{shapes} Input

If we use LATEX, the file shapes.ps will be used, and if we use PDFLATEX, the
file shapes.pdf will be used. So, if you sometimes use LATEX and sometimes use
PDFLATEX, you may find it easier to omit the extension, and have two copies of the
image in both PostScript and PDF format.

You can specify which file types to look for with the command

\DeclareGraphicsExtensions{ext-list} Definition

where ext-list is a comma-separated list of extensions. For example, if you are using
PDFLATEX, you might want to search first for PDF files, and then for PNG files:

\DeclareGraphicsExtensions{.pdf,.png} Input

or if you are using LATEX and dvips, you might want to first search for encapsulated
PostScript (EPS) files and then for PostScript (PS) files:

\DeclareGraphicsExtensions{.eps,.ps} Input

CHAPTER 6. PACKAGES 66

The optional argument key vals should be a comma separated list of key=label
pairs. Common options are:

angle=x rotate the picture by x◦

width=len scale the picture so that the width is len. (Remember to specify
the units)

height=len scale the picture so that the height is len. (Remember to specify
the units)

scale=value Scale the picture by value
trim=l b r t Specifies the amount to remove from each side. E.g. trim=1 2 3

4 crops the picture by 1bp from the left, 2bp from the bottom, 3bp
from the right and 4bp from the top. (The unit bp is a PostScript
point 72bp = 1in)

draft Don’t actually print the image, just draw a box of the same size
and print the filename inside it.

Let’s try rotating and scaling our picture:

\includegraphics[angle=45,width=1in]{shapes} Input

Output:

Output

The graphicx package also provides commands to rotate, resize, reflect and
scale text. They are as follows:

• \rotatebox{angle}{text}
Example:

\rotatebox{45}{Some text} Input

Output:

So
me tex

t
Output

• \scalebox{h scale}[v scale]{text}
Example:

\scalebox{0.8}{Some text} Input

CHAPTER 6. PACKAGES 67

Output:

Some text Output

• \reflectbox{text}
Example:

\reflectbox{Some text} Input

Output:

Sometext Output

• \resizebox{h length}{v length}{text}
Example:

\resizebox{12mm}{1cm}{Some text} Input

Output:

Some text Output

The graphicx package can have the following options passed to it:

draft Don’t actually display the images, just print the filename in a box of the
correct size. This is useful if you want to print out a draft copy of a document
to check the text rather than the images.

final Opposite of draft (default).

hiderotate Don’t show rotated text.

hidescale Don’t show scaled text.

Example:

\usepackage[draft]{graphicx} Input

Exercise 14 (Using the graphicx Package)

Download the file shapes.ps, and include it into your document. Alternatively,
if you prefer to use PDFLATEX, you can download the file shapes.pdf instead. (You
can download or view an example solution.)

file:exercises/shapes.ps
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/graphic.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/graphic.html

CHAPTER 6. PACKAGES 68

Some previewers may not be able to display PostScript images or perform the
scaling, rotating etc, in this case you can use dvips to convert your DVI file into
a PostScript file either using the MS-DOS Prompt, WinEdt or TeXnicCenter, as
described in Chapter 3, and then view it using GSView.

For more information on the graphicx package see The LATEX Graphics Com-
panion [4].

6.1.2 Changing the format of \today

In the document we have been creating in the exercises, we have used the command
\today to produce the current date. By default, this command displays the date
in a US format, e.g. September 27, 2004, but you might prefer a UK format. This
can be done by loading a package that redefines the \today command. There are
several packages available, amongst which are: ukdate and datetime.

For example, if you want to use the ukdate package, you would type the following
in the preamble:

\usepackage{ukdate} Input

and the command \today will then display the date in the form: Monday 27th

September, 2004
The datetime package provides twelve different date formats, as well as provid-

ing commands for printing the current time. The required date format can either
be set using a declaration, or by passing the relevant option to the package. For
example, to redefine \today to display the date in the form 27/09/2004, you can
either do

\usepackage[ddmmyyyy]{datetime} Input

or

↑Input

\usepackage{datetime}
\ddmmyyyydate

↓Input

The datetime package also provides a command to define your own date format
(and your own time format) if the available formats don’t meet your requirements.

6.2 Downloading and Installing Packages

New LATEX packages are being created all the time, so you may find that there are
some packages that you don’t have on your installation. In this case, if you don’t
have the package you want, you can download it from the TEX Archive [6].

Many packages are supplied with the code and documentation all bundled to-
gether in one file. This file usually has the extension .dtx, and it usually comes
with an installation script that has the extension .ins. Once you have downloaded
the .dtx and .ins files, you will then have to extract the code before you can use
it. Let’s illustrate this with an example.

CHAPTER 6. PACKAGES 69

The datetime package comes with the files datetime.dtx and datetime.ins.
You need to download both these files. You then need to LATEX the installation
script to obtain the file datetime.sty. You do this in the MS-DOS Prompt by
typing:

latex datetime.ins

This should create the file datetime.sty. Now you need to extract the documen-
tation which details what commands are supplied with this package. You do this
by LATEXing the file datetime.dtx:

latex datetime.dtx

This should create the file datetime.dvi. Alternatively, you can use PDFLATEX:

pdflatex datetime.dtx

This will obtain the file datetime.pdf, and since the file datetime.dtx uses the
hyperref package, all the cross-references in the PDF document will be active links.

The file datetime.sty needs to be put somewhere where LATEX can find it.
LATEX usually searches subdirectories of c:\texmf\tex\latex, depending on how
your system is configured. New files should be placed in the local texmf directory
tree, which is usually c:\localtexmf\tex\latex. Put the file datetime.sty in a
subdirectory of c:\localtexmf\tex\latex3 (e.g. c:\localtexmf\tex\latex\datetime),
and place datetime.dvi or datetime.pdf in one of the documentation subdirec-
tories (usually in c:\localtexmf\doc\latex). Once you have done this you will
need to update the TEX database. To do this you need to run MiKTeX Options
which will probably be in:

Start → Programs → MiKTeX → MiKTeX Options
and then click on the Refresh Now button (See Figure 6.1). If you are using UNIX
or Linux you need to use the command texhash or mktexlsr. Recent versions of
MiKTeX have an application called MiKTeX Update Wizard which can automatically
download and install known packages, check the MiKTeX documentation for further
details.

If you experience any problems, contact your system administrator for help.
Alternatively, you can leave the .sty file in the same directory as your LATEX

document, but if you do this, you will only be able to use it with documents in that
directory.

As mentioned in the previous section, the datetime package has various options
that can be used to change the format of \today. For example, by default the
datetime package redefines \today to display the date in the form: Monday 27th

September, 2004. The option short will produce an abbreviated form, (e.g. Mon
27th Sept, 2004) and the option nodayofweek won’t display the day of the week
(e.g. 27th September, 2004). These can be passed as a comma separated list in the
optional argument to the \usepackage command. The datetime package (version
2.3 and above) also defines the command \currenttime which displays the current
time. For example:

↑Input

\documentclass[a4paper,11pt]{article}

\usepackage[short,nodayofweek]{datetime}

\begin{document}

3you may have to create the relevant subdirectories

http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/index.html#datetime
http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/datetime/datetime.dtx
http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/datetime/datetime.ins

CHAPTER 6. PACKAGES 70

Figure 6.1: Updating the database

This is a simple \LaTeX\ document.
Here is the first paragraph.

Here is the second paragraph. As you
can see it’s a very
short document\footnote{with a footnote}.
This document was created on: \today\ at
\currenttime.

\end{document}
↓Input

Exercise 15 (Downloading and Installing a New Package)

Try downloading the datetime package to give you practice extracting and
installing packages. Then edit your document so that it uses the datetime package.
(You can download or view an example.)

http://theoval.cmp.uea.ac.uk/~nlct/latex/packages/index.html#datetime
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newsty.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newsty.html

Chapter 7

Figures and Tables

Figures and tables are refered to as “floats” because they are floated to the nearest
location. Floats have a caption and associated number. It is customary for figure
captions to appear at the bottom of the figure and for table captions to appear at
the top of the table. Figures and tables may not have page breaks within them
(although there is a package called longtable that allows you to have a table that
spans several pages, but that’s not covered here.)

7.1 Figures

Figures are created using the figure environment. The command:

\caption[short caption]{text} Definition

is used to generate the caption.
Recall from Section 6.1.1 we can include a PostScript or PDF image in our

document with the command \includegraphics defined in the graphicx package.
We can put our shapes.ps or shapes.pdf image into a figure as follows:

↑Input

\begin{figure}
\includegraphics{shapes}
\caption{Some shapes}
\end{figure}

↓Input

So far so good, but our picture needs to be centred. This can be done using the
command \centerline{object}:

↑Input

\begin{figure}
\centerline{\includegraphics{shapes}}
\caption{Some shapes}
\end{figure}

↓Input

The \caption command generates a number, just like \section, so we can
cross-reference it with \ref and \label. First, let’s label the figure:

71

file:exercises/shapes.ps

CHAPTER 7. FIGURES AND TABLES 72

↑Input

\begin{figure}
\centerline{\includegraphics{shapes}}
\caption{Some shapes}
\label{fig:shapes}
\end{figure}

↓Input

Now we can reference it:

Figure~\ref{fig:shapes} shows some shapes. Input

(As before we use ~ to make an unbreakable space.) This produces the following
output:

Figure 7.1 shows some shapes. Output

Figure 7.1: Some shapes

Just as we were able to generate a table of contents using \tableofcontents,
we can also generate a list of figures using the command

\listoffigures Definition

As before you will need to LATEX your document twice to get the list of figures
up-to-date.

Exercise 16 (Creating Figures)

If you did Exercise 14, you should have a document with the image shapes.ps
(or shapes.pdf) in it. You now need to put this image into a figure environment.
Remember to centre the image, and give the figure a caption. Next, try labelling
the figure and referencing it in the text. You could also put in a list of figures after
the table of contents.

(You can download or view an example.)

Coming up next is a description of the subfigure package. If you’re struggling
a bit you can skip this bit and move on to Section 7.2 on page 74.

file:exercises/shapes.ps
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/figs.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/figs.html

CHAPTER 7. FIGURES AND TABLES 73

7.1.1 Subfigures

Some figures have subfigures within them. These can be generated using the
subfigure package. Each subfigure is specified using

\subfigure[caption]{object} Definition

For example, suppose you have two files circle.ps and rectangle.ps:

↑Input

\begin{figure}
\begin{center}
\subfigure[A Rectangle]{\includegraphics{rectangle.ps}}
\hspace{1in}
\subfigure[A Circle]{\includegraphics{circle.ps}}
\end{center}
\caption{Two Shapes: (a) A Rectangle and (b) A Circle}
\end{figure}

↓Input

A few notes:

• \hspace{len} make a horizontal space of length len.

• The center environment centres its contents.

Again we can cross-reference the subfigures. The \label command should go in
the mandatory argument of the \subfigure command.

↑Input

\begin{figure}
\begin{center}
\subfigure[A Rectangle]{%
\label{fig:rectangle}\includegraphics{rectangle.ps}}
\hspace{1in}
\subfigure[A Circle]{%
\label{fig:circle}\includegraphics{circle.ps}}
\end{center}
\caption{Two Shapes: (a) A Rectangle and (b) A Circle}
\label{fig:shapes2}
\end{figure}

Figure~\ref{fig:shapes2} shows some shapes.
Figure~\ref{fig:rectangle} shows a rectangle and
Figure~\ref{fig:circle} shows a circle.

↓Input

This produces the following output:

↑Output

Figure 7.2 shows some shapes. Figure 7.2(a) shows a rectangle and Figure 7.2(b)
shows a circle.

↓Output

and produces Figure 7.2.

CHAPTER 7. FIGURES AND TABLES 74

(a) A Rectangle (b) A Circle

Figure 7.2: Two Shapes: (a) A Rectangle and (b) A Circle

Exercise 17 (Creating Sub-Figures)

Download rectangle.ps and circle.ps (or rectangle.pdf and circle.pdf)
and add Figure 7.2 to your document. You can download or view an example.

7.2 Tables

Tables are produced in much the same way as figures, except that the table en-
vironment is used instead. It is a typographical convention to have the caption at
the top of the table (as opposed to figures, which have the caption at the bottom).
Example:

↑Input

\begin{table}
\caption{A Sample Table}
\label{tab:sample}
\centerline{
\begin{tabular}{lr}
Item & Cost\\
Video & 8.99\\
CD & 9.99\\
DVD & 15.00
\end{tabular}}
\end{table}

↓Input

This produces Table 7.1.

Table 7.1: A Sample Table
Item Cost
Video 8.99
CD 9.99
DVD 15.00

Again, \centerline is used to centre the tabular environment, however the
table is a little cramped, so let’s put in a bit of extra vertical space after the caption.
This can be done using the command:

file:exercises/rectangle.ps
file:exercises/circle.ps
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/subfigs.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/subfigs.html

CHAPTER 7. FIGURES AND TABLES 75

Table 7.2: A Sample Table

Item Cost
Video 8.99
CD 9.99
DVD 15.00

\vspace{length} Definition

Our code now looks like:

↑Input

\begin{table}
\caption{A Sample Table}
\label{tab:sample}
\vspace{10pt}
\centerline{
\begin{tabular}{lr}
Item & Cost\\
Video & 8.99\\
CD & 9.99\\
DVD & 15.00
\end{tabular}}
\end{table}

↓Input

This produces Table 7.2.
As with figures, you can create a list of tables using the command

\listoftables Definition

Exercise 18 (Creating Tables)

If you did Exercise 13, you should have a tabular environment in your docu-
ment. Try turning this into a table, and add Table 7.2. You could also try adding
a list of tables. You can download or view the document.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/tables.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/tables.html

Chapter 8

Defining Commands

It is possible to define your own commands or redefine existing ones. Be very careful
about redefining existing commands; don’t redefine a command simply because you
want to use the name, only redefine it if you are making a modification. For example,
if you want to change the format of the current date, you would redefine \today,
but if you want to define a command to display a specific date, you should define a
new command with a different name.

There are several reasons why you might want to define a new command:

1. Reduce typing:

Suppose you have a series of commands or text that you find yourself fre-
quently using, then you could define a command to do all these other com-
mands for you.

Example: Suppose you want a lot of large bold slanted sans-serif portions of
text within your document. Every time you type those portions of text, you
will have to do something like:

\textsf{\large\bfseries\slshape Some text} Input

It would be much easier if you could use just one command to do all that,
called, say, \largeboldsfsl:

\largeboldsfsl{Some text} Input

or we could call it, say, \lbsfsl which is shorter, but slightly less memorable:

\lbsfsl{Some text} Input

2. Ensure consistency:

You may find that you want to format an object a certain way. For example,
your document may have a lot of keywords in it, and you may want to format
these keywords in a different font, say sans-serif, so that they stand out. You
could just do:

76

CHAPTER 8. DEFINING COMMANDS 77

A \textsf{command} usually begins with a backslash. Input

however, it is better to define a new command called, say, \keyword that will
typeset its argument in a sans-serif font. That way it becomes a lot easier to
change the format at some later date. For example, you may decide to splash
out and have your keywords typed in a particular colour. In which case,
all you need to do is simply change the definition of the command \keyword,
otherwise you’ll have to go through your entire document looking for keywords
and changing each one which could be very time consuming if you have a large
document. You might also decide at some later date to make an index for your
document. Indexing all the keywords then becomes very simple, as again all
you’ll need to do is modify the \keyword command.

New commands are defined using the command:

\newcommand{cmd}[n-args][default]{text} Definition

The first mandatory argument cmd is the name of your new command, which
must start with a backslash. The optional argument n-args specifies how many
arguments your new command must take. The next optional argument default will
be discussed later. The final mandatory argument text specifies what LATEX should
do everytime it encounters this command.

Let’s begin with a trivial example. Suppose I wanted to write a document about
a particular course, say “Programming — Languages and Software Construction”,
and I had to keep writing the course title, then I might decide to define a command
that prints the course title rather than having to laboriously type it out every time.
Let’s call our new command \coursetitle. We want the following code:

The course \emph{\coursetitle} is an undergraduate course. Input

to produce the following output:

↑Output

The course Programming — Languages and Software Construction is an under-
graduate course.

↓Output

Clearly this command doesn’t need any arguments, so we don’t need to worry
about the optional argument n-args to \newcommand, and the only thing our new
command needs to do is print:
Programming --- Languages and Software Construction
so we would define our new command as follows:

↑Input

\newcommand{\coursetitle}{Programming --- Languages
and Software Construction}

↓Input

Commands must always be defined before they are used. The best place to
define commands is in the preamble:

CHAPTER 8. DEFINING COMMANDS 78

↑Code

\documentclass[a4paper]{article}

\newcommand{\coursetitle}{Programming --- Languages
and Software Construction}

\begin{document}

\section{\coursetitle}

The course \emph{\coursetitle} is an undergraduate course.

\end{document}

↓Code

Now let’s try defining a command that takes an argument (or parameter). Let’s
go back to our \keyword example. This command needs to take one argument that
is the keyword. Let’s suppose we want keywords to come out in sans-serif, then we
could do:

\newcommand{\keyword}[1]{\textsf{#1}} Input

In this case we have used the optional argument n-args to \newcommand. We want
our command \keyword to have one argument, so we have [1]. In \textsf{#1}
the #1 represents the first argument. (If we had more than one argument, #2 would
represent the second argument, #3 would respresent the third argument etc. up to
a maximum of 9.) So

\keyword{commands}

will be equivalent to

\textsf{commands}

and

\keyword{environment}

will be equivalent to

\textsf{environment}

and so on.
Again, the line

\newcommand{\keyword}[1]{\textsf{#1}}

should go in the preamble. That way you can ensure the command won’t be used
before it’s defined:

CHAPTER 8. DEFINING COMMANDS 79

↑Code

\documentclass[a4paper]{article}

\newcommand{\keyword}[1]{\textsf{#1}}

\begin{document}

A \keyword{command} usually begins with a backslash.

\end{document}

↓Code

Now if we want to change the way the keywords are formatted, we can simply
change the definition of \keyword. Let’s modify our code so that the keyword is
now in a slanted sans-serif font:

↑Code

\documentclass[a4paper]{article}

\newcommand{\keyword}[1]{\textsf{\slshape #1}}

\begin{document}

A \keyword{command} usually begins with a backslash.

\end{document}

↓Code

Let’s go one stage further. The color package enables the use of colour, so let’s
make our keywords blue:

↑Code

\documentclass[a4paper]{article}

\usepackage{color}

\newcommand{\keyword}[1]{\textsf{\slshape\color{blue}#1}}

\begin{document}

A \keyword{command} usually begins with a backslash.

\end{document}

↓Code

Or we could index the keywords. To do this we need the package makeidx and the
commands \makeindex, \index{text} and \printindex:

↑Code

\documentclass[a4paper]{article}

CHAPTER 8. DEFINING COMMANDS 80

\usepackage{makeidx}

\makeindex

\newcommand{\keyword}[1]{\textsf{\slshape #1}\index{#1}}

\begin{document}

A \keyword{command} usually begins with a backslash.

\printindex

\end{document}

↓Code

For further information about how to create an index, see A Guide to LATEX [2] or
The LATEX Companion [3]. Alternatively, if you want a brief overview on-line, try
Using LATEX to Write a PhD Thesis1.

Exercise 19 (Defining a New Command)

Try typing up the following code:

↑Code

\documentclass[a4paper]{article}

\newcommand{\keyword}[1]{\textsf{#1}}

\begin{document}

A \keyword{command} usually begins with a backslash.

Segments of code may be \keyword{grouped}.

Some \keyword{commands} take one or more \keyword{arguments}.

\end{document}

↓Code

Then modify your code so that the keywords are in a slanted sans-serif font,
and then modify your code so that the keywords come out in blue. (You may
need to convert your DVI file to PostScript in order to see the colour, using dvips
as described in Chapter 3, or use PDFLATEX instead of LATEX.) Again you can
download or view the result.

For the more adventurous:
If you want to create an index as in the previous example, you will need to use
the application makeindex. Suppose your source code is saved as exercise19.tex,
then if you are using the MS-DOS Prompt you will need to do:

1http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html

http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newcom.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newcom.html
http://theoval.cmp.uea.ac.uk/~nlct/latex/thesis/thesis.html

CHAPTER 8. DEFINING COMMANDS 81

latex exercise19.tex
makeindex exercise19.idx
latex exercise19.tex

If you are using WinEdt click the LATEX button, then select Makeindex from the
menu, then click on the LATEX button again. If you are using TeXnicCenter, if you
select ‘uses MakeIndex’ when you create your project, TeXnicCenter will automat-
ically call makeindex when you click on the build icon. If you have already created
the project, you can modify its settings using the Project menu.

8.1 Defining Commands with an Optional Argu-
ment

As mentioned earlier, the \newcommand command has an optional argument default.
This allows you to define a command with an optional argument. For example,
suppose we want a command called, say, \price. Suppose we want the following
code:

\price{100} Input

to produce the following output:

£100 excl VAT @ 17.5% Output

and let’s suppose we want an optional argument so that we can change the VAT.
That is, we would want the following code:

\price[0]{30} Input

produce the following output:

£30 excl VAT @ 0% Output

Therefore we want to define a command such that if the optional argument is absent
we will have 17.5, and if it is present the optional argument will be substituted
instead. This command can be defined as follows:

\newcommand{\price}[2][17.5]{\pounds #2 excl VAT @ #1\%} Input

Here, #1 represents the optional argument (by default 17.5) and #2 represents
the mandatory argument (the second argument if the optional argument is present,
or the only argument if the optional argument is absent.)

CHAPTER 8. DEFINING COMMANDS 82

Exercise 20 (Defining Commands with an Optional Argument)

In this exercise, you will need to define a slightly modified version of the above
example. Try defining a command called, say, \cost. It should take one optional
argument and one mandatory argument. Without the optional argument, it behaves
in the same way as the \price example above, so that, say,

\cost{50} Input

will produce

£50 excl VAT @ 17.5% Output

but with the optional argument, you can change the excl VAT @ 17.5\% bit. So
that, say,

\cost[inc VAT]{50} Input

will produce

£50 inc VAT Output

You can download or view the solution.

8.2 Redefining Commands

Commands can be redefined using the command:

\renewcommand{cmd}[n-args][default]{text} Definition

This has exactly the same format as \newcommand but is used for redefining
existing commands. Caveat: never redefine a command whose existing function is
unknown to you.

Recall the itemize environment from Section 4.3.1. You may have up to four
nested itemize environments, the labels for the outer environment are specified
by the command \labelitemi, the labels for the second level are specified by
\labelitemii, the third by \labelitemiii and the fourth by \labelitemiv. By
default, \labelitemi is a bullet point, \labelitemii is an en dash, \labelitemiii
is an asterisk and \labelitemiv is a dot (• – ∗ ·). These can be changed by
redefining \labelitemi etc.

Example: Recall the command \dag produces a dagger symbol, we can use this
symbol instead of a bullet point:

↑Input

\renewcommand{\labelitemi}{\dag}

\begin{itemize}

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newcomopt.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newcomopt.html

CHAPTER 8. DEFINING COMMANDS 83

\item Animal

\item Mineral

\item Vegetable

\end{itemize}
↓Input

Output:

↑Output

† Animal

† Mineral

† Vegetable

↓Output

Here’s another example, it uses the PostScript font2 ZapfDingbats via the pifont
package:

↑Input

\renewcommand{\labelitemi}{\ding{43}}

\begin{itemize}

\item Animal

\item Mineral

\item Vegetable

\end{itemize}
↓Input

Output:

↑Output

↓Output

In the above example, it would actually be better to use the dinglist environment
defined in the pifont package. See The LATEX Companion [3] for more details.

You may have noticed that LATEX automatically generates pieces of text such
as “Chapter”, “Figure”, “Bibliography”. These are generated by the commands
shown in Table 8.1.

2This font may not come out if you view the PDF version of your document in xpdf

CHAPTER 8. DEFINING COMMANDS 84

Table 8.1: Object Names (†report class file, ‡article class file, remainder both report
and article)

Command Default Text
\contentsname Contents
\listfigurename List of Figures
\listtablename List of Tables
\bibname† Bibliography
\refname‡ References
\indexname Index
\figurename Figure
\tablename Table
\partname Part
\chaptername† Chapter
\appendixname Appendix
\abstractname Abstract

You can change the defaults using \renewcommand. For example, suppose you
want the table of contents to be labelled “Table of Contents”, instead of the default
“Contents”, you would need to do:

\renewcommand{\contentsname}{Table of Contents} Input

Exercise 21 (Renewing Commands)

If you did Exercises 16 and 18, go back to that document and changed the
figures and tables so that they are labelled “Fig” and “Tab” instead of “Figure”
and “Table”.

You can download or view the solution.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/renewcom.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/renewcom.html

Chapter 9

Mathematics

As mentioned in the Introduction, LATEX is particularly good at typesetting math-
ematics. In order to use any of the maths commands we need to be in one of
the mathematics environments. There are two basic types of mathematics: in-line
maths and displayed maths. In-line maths is mathematics that occurs within a line
of text, for example:

The variable x is transformed by the function f(x). Output

Displayed maths is mathematics that occurs on a line of its own. For example:

↑Output

A polynomial is a function of the form

f(x) =
n∑
i=0

aix
i

↓Output

9.1 In-Line Mathematics

In-line mathematics is created using the math environment. (Note U.S. spelling —
‘math’ not ‘maths’). Example:

↑Input

The variable \begin{math}x\end{math} is transformed
by the function \begin{math}f(x)\end{math}.

↓Input

It’s somewhat cumbersome having to type \begin{math} and \end{math} and it
also makes the source code a little difficult to read so there are shorthand notations
that can be used instead: \(is equivalent to \begin{math} and \) is equivalent to
\end{math}. So the example above can be rewritten:

↑Input

The variable \(x\) is transformed
by the function \(f(x)\).

85

CHAPTER 9. MATHEMATICS 86

↓Input

There is an even shorter notation: The special character $ is equivalent to both
\begin{math} and \end{math}:

↑Input

The variable x is transformed
by the function $f(x)$.

↓Input

This is considerably easier to type and to read, but you need to make sure that all
your $ symbols have matching pairs. The above code will look like:

The variable x is transformed by the function f(x). Output

Note: you should always make sure you are in maths mode to typeset any
variables (such as x, y, z), as this will ensure that the correct maths fonts are used.

↑Input

Notice the difference between (x, y, z) and
\textit{(x, y, z)}.

↓Input

Notice the difference between (x, y, z) and (x, y, z). Output

9.2 Displayed Mathematics

Displayed mathematics can be created using either the displaymath or the equation
environments. Example:

↑Input

A linear function is a function of the form
\begin{displaymath}
y = mx + c
\end{displaymath}

↓Input

Output:

↑Output

A linear function is a function of the form

y = mx+ c

↓Output

The equation environment is the same as the displaymath environment, except
that the equation is numbered. Substituting equation for displaymath in the
above example:

CHAPTER 9. MATHEMATICS 87

↑Input

A linear function is a function of the form
\begin{equation}
y = mx + c
\end{equation}

↓Input

results in the following output:

↑Output

A linear function is a function of the form

y = mx+ c (9.1)

↓Output

Recall from Section 5.5 that we can cross-reference most things that LATEX
automatically numbers using \ref and \label. Equations can be cross-referenced
in the same way:

↑Input

Equation~\ref{eqn:linear} is a linear function.
\begin{equation}
\label{eqn:linear}
f(x) = mx + c
\end{equation}

↓Input

↑Output

Equation 9.2 is a linear function.

f(x) = mx+ c (9.2)

↓Output

Note: both the equation and the displaymath environments are only designed
for one line of maths. Therefore you must not have any line breaks or paragraph
breaks within them. If you want several aligned equations, you need to use another
environment, such as eqnarray or align. This document does not cover these
environments, but if you are interested see The LATEX Companion [3] or A Guide
to LATEX [2].

9.3 Mathematical Commands

Most of the commands described in this section may only be used in one of the
mathematics environments. If you try to use a mathematics command outside a
maths environment you will get a “Missing $ inserted” error message.

CHAPTER 9. MATHEMATICS 88

Table 9.1: Maths Font Changing Commands

Command Example Input Corresponding Output
\mathrm{maths} xyz xyz
\mathsf{maths} xyz xyz
\mathtt{maths} \mathtt{xyz} xyz
\mathit{maths} xyz xyz
\mathbf{maths} \mathbf{xyz} xyz
\mathcal{maths} \mathcal{XYZ} XYZ

9.3.1 Maths Fonts

Just as we are able to change text fonts using the commands \textrm, \textbf etc,
we can also use commands to change the maths font. Basic maths font changing
commands are shown in Table 9.1.

The caligraphic fonts are only available for upper-case characters. Note that
if you want actual text to appear in a maths environment you need to either use
\mbox{text}:

↑Input

\begin{displaymath}
x > y \mbox{ and } y < z
\end{displaymath}

↓Input

↑Output

x > y and y < z

↓Output

or the command \text{text} which is defined in the amsmath package:

↑Input

\begin{displaymath}
x > y \text{ and } y < z
\end{displaymath}

↓Input

↑Output

x > y and y < z

↓Output

Table 9.2 lists additional font commands supplied with the amsmath and amsfonts
packages.

9.3.2 Greek Letters

Greek letters that differ from the corresponding Roman letters are obtained by
placing a backslash in front of the name. Lower case Greek letters are shown in
Table 9.3 and upper case Greek letters are shown in Table 9.4.

CHAPTER 9. MATHEMATICS 89

Note that there is no omicron as this is the same as a lower case o. There are
also some variants of certain symbols, such as \vartheta as opposed to \theta.

9.3.3 Subscripts and Superscripts

Subscripts are obtained either by the command

\sb{maths} Definition

or by the special character:

{maths} Definition

Superscripts are obtained either by the command

\sp{maths} Definition

or by the special character:

^{maths} Definition

Examples:

1. This example uses \sb and \sp:

↑Input

\begin{displaymath}
y = x\sb{1}\sp{2} + x\sb{2}\sp{2}
\end{displaymath}

↓Input

↑Output

y = x2
1 + x2

2

↓Output

2. This example uses and ^

Table 9.2: The amsfonts∗ and amsmath† Font Commands

Command Example Input Example Output
∗\mathbb{maths} $\mathbb{A+B=C}$ A+ B = C

∗\mathfrak{maths} $\mathfrak{A+B=C}$ A + B = C
†\boldsymbol{maths} $\boldsymbol{A+B=C}$ A+B = C
†\pmb{symbol} $\pmb{+-=}$ +− =+− =+− =

CHAPTER 9. MATHEMATICS 90

Table 9.3: Lower Case Greek Letters

\alpha α \beta β \gamma γ
\delta δ \epsilon ε \varepsilon ε
\zeta ζ \eta η \theta θ
\vartheta ϑ \iota ι \kappa κ
\lambda λ \mu µ \nu ν
\xi ξ \pi π \varpi $
\rho ρ \varrho % \sigma σ
\varsigma ς \tau τ \upsilon υ
\phi φ \varphi ϕ \chi χ
\psi ψ \omega ω

Table 9.4: Upper Case Greek Letters

\Gamma Γ \Delta ∆ \Theta Θ
\Lambda Λ \Xi Ξ \Pi Π
\Sigma Σ \Upsilon Υ \Phi Φ
\Psi Ψ \Omega Ω

↑Input

\begin{displaymath}
y = x_{1}^{2} + x_{2}^{2}
\end{displaymath}

↓Input

↑Output

y = x2
1 + x2

2

↓Output

3. Recall that mandatory arguments only consisting of one character don’t need
to be grouped, so the above code can also be written as:

↑Input

\begin{displaymath}
y = x_1^2 + x_2^2
\end{displaymath}

↓Input

CHAPTER 9. MATHEMATICS 91

↑Output

y = x2
1 + x2

2

↓Output

This is simpler than the above two examples.

4. Subscripts and superscripts can also be nested:

↑Input

\begin{displaymath}
f(x) = e^{x_1}
\end{displaymath}

↓Input

↑Output

f(x) = ex1

↓Output

This example is slightly incorrect as e isn’t actually a variable and shouldn’t
be typeset in italic. The correct way to do this is:

↑Input

\begin{displaymath}
f(x) = \mathrm{e}^{x_1}
\end{displaymath}

↓Input

↑Output

f(x) = ex1

↓Output

If you are going to use e a lot, it will be simpler to define a new command to
do this:

↑Input

\newcommand{\e}{\mathrm{e}}

\begin{displaymath}
f(x_1, x_2) = \e^{x_1^2} + \e^{x_2^2}
\end{displaymath}

CHAPTER 9. MATHEMATICS 92

↓Input

↑Output

f(x1, x2) = ex
2
1 + ex

2
2

↓Output

9.3.4 Functional Names

Functions such as log and tan can’t simply be typed in as log or tan otherwise they
will come out looking like the variables l times o times g (log) or t times a times n
(tan). Instead you should use one of the commands listed in Table 9.5.

Table 9.5: Function Names

\arccos \arcsin \arctan \arg \cos \cosh
\cot \coth \csc \deg \det \dim
\exp \gcd \hom \inf \ker \lg
\lim \liminf \limsup \ln \log \max
\min \Pr \sec \sin \sinh \sup
\tan \tanh

Of these functions, the following functions can have limits by using the subscript
command or the superscript command ^:

\det \gcd \inf \lim \liminf
\limsup \max \min \Pr \sup

Examples:

1. This example uses the cos and sin functions and also the Greek letter theta.

↑Input

\begin{displaymath}
z = r(\cos\theta + i\sin\theta)
\end{displaymath}

↓Input

↑Output

z = r(cos θ + i sin θ)

↓Output

CHAPTER 9. MATHEMATICS 93

2. This example has a limit. The command \infty is the infinity symbol ∞,
and the command \to displays an arrow pointing to the right. Note the use
of

↑Input

\begin{displaymath}
\lim_{x\to\infty} f(x)
\end{displaymath}

↓Input

↑Output

lim
x→∞

f(x)

↓Output

3. This is another example of a functional name using a subscript:

↑Input

\begin{displaymath}
\min_x f(x)
\end{displaymath}

↓Input

↑Output

min
x
f(x)

↓Output

In addition, the following commands are also available:

Command Example Input Example Output
\bmod $m \bmod n$ m mod n
\pmod{maths} $m \pmod{n}$ m (mod n)

If you want a function that isn’t specified in Table 9.5, you can use the command

\operatorname{operator name} Definition

or

\operatornamewithlimits{operator name} Definition

both of which are defined in the amsmath package.
The second of these commands, \operatornamewithlimits, allows you to have

a function that can take limits using the or ^ commands, just like \lim, \min etc.
Examples

CHAPTER 9. MATHEMATICS 94

1. Suppose we want a function called card, which represents the cardinality of a
set S:

↑Input

\begin{displaymath}
n = \operatorname{card}(\mathcal{S})
\end{displaymath}

↓Input

↑Output

n = card(S)

↓Output

In this example \mathcal is used as sets are usually represented in a cali-
graphic font.

2. It’s a bit cumbersome having to keep typing \operatorname{card} everytime
you want card, a better thing to do would be to define a new command called
\card.

↑Input

\newcommand{\card}{\operatorname{card}}

\begin{displaymath}
n = \card(\mathcal{S})
\end{displaymath}

↓Input

↑Output

n = card(S)

↓Output

3. Let’s have an example of an operator that takes a limit:

↑Input

\newcommand{\mode}{\operatornamewithlimits{mode}}

\begin{displaymath}
x_m = \mode_{x \in \mathcal{S}}(x)
\end{displaymath}

CHAPTER 9. MATHEMATICS 95

↓Input

↑Output

xm = mode
x∈S

(x)

↓Output

9.3.5 Fractions

Fractions are created using the command

\frac{numerator}{denominator} Definition

Examples:

1. A simple fraction:

↑Input

\begin{displaymath}
\frac{1}{1+x}
\end{displaymath}

↓Input

↑Output

1
1 + x

↓Output

2. A nested fraction:

↑Input

\begin{displaymath}
\frac{1+\frac{1}{x}}{1+x+x^2}
\end{displaymath}

↓Input

↑Output

1 + 1
x

1 + x+ x2

↓Output

CHAPTER 9. MATHEMATICS 96

3. A derivative:

↑Input

\begin{displaymath}
f’(x) = \frac{df}{dx}
\end{displaymath}

↓Input

↑Output

f ′(x) =
df

dx
↓Output

Again, as with e, the differential operator ‘d’ should be in an upright font as
it is not a variable:

↑Input

\begin{displaymath}
f’(x) = \frac{\mathrm{d}f}{\mathrm{d}x}
\end{displaymath}

↓Input

↑Output

f ′(x) =
df
dx

↓Output

4. The above example is rather cumbersome, particularly if you have a lot of
derivatives, so it might be easier to define a new command:

↑Input

\newcommand{\deriv}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}}

\begin{displaymath}
f’(x) = \deriv{f}{x}
\end{displaymath}

↓Input

↑Output

f ′(x) =
df
dx

↓Output

CHAPTER 9. MATHEMATICS 97

5. Partial derivatives can be obtained similarly using the command \partial to
display the partial derivative symbol:

↑Input

\newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}}

\begin{displaymath}
f_x = \pderiv{f}{x}
\end{displaymath}

↓Input

↑Output

fx =
∂f

∂x
↓Output

6. A double partial derivative:

↑Input

\begin{displaymath}
f_{xy} = \frac{\partial^2 f}{\partial x \partial y}
\end{displaymath}

↓Input

↑Output

fxy =
∂2f

∂x∂y

↓Output

9.3.6 Roots

Roots are obtained using the command

\sqrt[order]{maths} Definition

without the optional argument order it will produce a simple square root. Cubic
roots etc can be obtained using the optional argument.

Examples:

1. A square root:

CHAPTER 9. MATHEMATICS 98

↑Input

\begin{displaymath}
\sqrt{a+b}
\end{displaymath}

↓Input

↑Output

√
a+ b

↓Output

2. A cubic root:

↑Input

\begin{displaymath}
\sqrt[3]{a+b}
\end{displaymath}

↓Input

↑Output

3
√
a+ b

↓Output

3. An nth root:

↑Input

\begin{displaymath}
\sqrt[n]{a+b}
\end{displaymath}

↓Input

↑Output

n
√
a+ b

↓Output

CHAPTER 9. MATHEMATICS 99

Table 9.6: Relational Symbols

\approx ≈ \asymp � \bowtie ./
\cong ∼= \dashv a \doteq

.=
\equiv ≡ \frown _ \ge or \geq ≥
\gg � \in ∈ \le or \leq ≤
\ll � \mid or | | \models |=
\neq 6= \ni 3 \notin /∈
\parallel ‖ \prec ≺ \preceq �
\perp ⊥ \propto ∝ \sim ∼
\simeq ' \smile ^ \sqsubseteq v
\sqsupseteq w \subset ⊂ \subseteq ⊆
\succ � \succeq � \supset ⊃
\supseteq ⊇ \vdash `

9.3.7 Mathematical Symbols

Relational symbols are shown in Table 9.6. If you want a negation that is not
shown, you can obtain it by preceeding the symbol with the command \not. For
example: \not\subset produces the symbol 6⊂.

Binary operator signals are shown in Table 9.7, and arrow symbols are shown
in Table 9.8.

Symbols that can have limits are shown in Table 9.9. The size of these symbols
depends on whether they are in displayed maths or in-line maths. Examples:

1. Displayed Maths

↑Input

\begin{displaymath}
f(x) = \sum_{i=1}^{n} x_i + \prod_{i=1}^{n} x_i
\end{displaymath}

↓Input

↑Output

f(x) =
n∑
i=1

xi +
n∏
i=1

xi

↓Output

2. In-line Maths

↑Input

\begin{math}
f(x) = \sum_{i=1}^{n} x_i + \prod_{i=1}^{n} x_i
\end{math}

CHAPTER 9. MATHEMATICS 100

Table 9.7: Binary Operator Symbols

\amalg q \ast ∗ \bullet •
\bigcirc © \bigtriangledown 5 \bigtriangleup 4
\cap ∩ \cdot · \circ ◦
\cup ∪ \dagger † \ddagger ‡
\diamond � \div ÷ \mp ∓
\odot � \ominus 	 \oplus ⊕
\oslash � \otimes ⊗ \pm ±
\setminus \ \sqcap u \sqcup t
\star ? \times × \triangleleft /
\triangleright . \uplus] \vee ∨
\wedge ∧ \wr o

Table 9.8: Arrow Symbols

\downarrow ↓ \Downarrow ⇓
\hookleftarrow ←↩ \hookrightarrow ↪→
\leftarrow or \gets ← \Leftarrow ⇐
\leftharpoondown ↽ \leftharpoonup ↼
\leftrightarrow ↔ \Leftrightarrow ⇔
\longleftarrow ←− \Longleftarrow ⇐=
\longleftrightarrow ←→ \Longleftrightarrow ⇐⇒
\longmapsto 7−→ \longrightarrow −→
\Longrightarrow =⇒ \mapsto 7→
\nearrow ↗ \nwarrow ↖
\rightarrow or \to → \Rightarrow ⇒
\rightharpoondown ⇁ \rightharpoonup ⇀
\rightleftharpoons
 \searrow ↘
\swarrow ↙ \uparrow ↑
\Uparrow ⇑ \updownarrow l
\Updownarrow m

Table 9.9: Symbols with Limits

\sum
∑

\int
∫

\oint
∮

\prod
∏

\coprod
∐

\bigcap
⋂

\bigcup
⋃

\bigsqcup
⊔

\bigvee
∨

\bigwedge
∧

\bigodot
⊙

\bigotimes
⊗

\bigoplus
⊕

\biguplus
⊎

CHAPTER 9. MATHEMATICS 101

↓Input

↑Output

f(x) =
∑n
i=1 xi +

∏n
i=1 xi

↓Output

Ellipsis commands are shown in Table 9.10.

Table 9.10: Ellipses

\ldots . . . \cdots · · ·

\vdots
... \ddots

. . .

Examples:

1. Low ellipsis: This example uses the command \forall to produce the ‘for all’
symbol ∀, and it also uses \ (backslash space) to make a space before the for
all symbol:

↑Input

\begin{displaymath}
a_ix_i = b_i \ \forall i = 1,\ldots, n
\end{displaymath}

↓Input

↑Output

aixi = bi ∀i = 1, . . . , n

↓Output

2. Centred ellipsis:

↑Input

\begin{displaymath}
y = a_1 + a_2 + \cdots + a_n
\end{displaymath}

↓Input

↑Output

y = a1 + a2 + · · ·+ an

↓Output

CHAPTER 9. MATHEMATICS 102

For other symbol commands, see A Guide to LATEX [2] or The LATEX Compan-
ion [3].

Exercise 22 (Maths: Fractions and Symbols)

This exercise uses a fraction, a square root, subscripts, superscripts and symbols.
Try reproducing the following output:

↑Output

The quadratic equation
2∑
i=0

aix
i = 0

has solutions given by

x =
−a1 ±

√
a2

1 − 4a2a0

2a2
↓Output

Again you can download or view the solution.

9.3.8 Delimiters

Placing brackets around a tall object in maths mode, such as fractions, does not
look right if you use normal sized brackets. For example:

↑Input

\begin{displaymath}
(\frac{1}{1+x})
\end{displaymath}

↓Input

↑Output

(
1

1 + x
)

↓Output

Under such circumstances, it is better to use the commands:

\leftdelimiter Definition

and

\rightdelimiter Definition

Note that you must always have matching \left and \right commands, although
the delimiters used may be different. Available delimiters are shown in Table 9.11.

If you want one of the delimiters to be invisible, use a . (full stop) as the
delimiter.
Examples:

1. Round bracket delimiters:

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths1.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths1.html

CHAPTER 9. MATHEMATICS 103

Table 9.11: Delimiters

(()) [[]]
\{ { \} } | | \| ‖
/ / \backslash \ \langle 〈 \rangle 〉
\lfloor b \rfloor c \lceil d \rceil e
\uparrow ↑ \downarrow ↓ \Uparrow ⇑ \Downarrow ⇓
\updownarrow l \Updownarrow m

↑Input

\begin{displaymath}
\left(
\frac{1}{1+x}
\right)
\end{displaymath}

↓Input

↑Output(
1

1 + x

)
↓Output

2. Vertical bar delimiters:

↑Input

\begin{displaymath}
\left|
\frac{1}{1+x}
\right|
\end{displaymath}

↓Input

↑Output∣∣∣∣ 1
1 + x

∣∣∣∣
↓Output

3. Delimiters don’t have to match:

CHAPTER 9. MATHEMATICS 104

↑Input

\begin{displaymath}
\left[\frac{1}{1+x}\right\rangle
\end{displaymath}

↓Input

↑Output[
1

1 + x

〉
↓Output

We have now learnt enough to reproduce the equation shown in Chapter 1:

↑Input

\newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\e}{\mathrm{e}}

\begin{displaymath}
\pderiv{^2\mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i} \frac{\e^{v_i}}{1-\e^{v_i}}
+ v_i \frac{\e^{v_i}\pderiv{v_i}{\rho_i}(1-\e^{v_i})

+\e^{2v_i}\pderiv{v_i}{\rho_i}}{(1-\e^{v_i})^2}
\right)
\end{displaymath}

↓Input

↑Output

∂2L
∂zρi

2 = − ∂ρi
∂zρi

(
∂vi
∂ρi

evi

1− evi
+ vi

evi ∂vi∂ρi
(1− evi) + e2vi ∂vi

∂ρi

(1− evi)2

)
↓Output

Note: The above code looks a bit complicated, and there are so many braces
that it can be easy to lose track, so here are some ways of making it a little easier
to type:

1. Whenever you start a new environment type in the \begin and \end bits first,
and then insert whatever goes inside the environment. This ensures that you
always have a matching \begin and \end.

2. Whenever you type any braces, always type the opening and closing braces
first, and then insert whatever goes in between. This will ensure that your
braces always match up.

So keeping these notes in mind, let’s try typing in the code in a methodical
manner:

CHAPTER 9. MATHEMATICS 105

1. Start the displaymath environment:

↑Input

\begin{displaymath}
\end{displaymath}

↓Input

2. We now need a partial derivative:

↑Input
\begin{displaymath}
\pderiv{}{}
\end{displaymath}

↓Input

3. Let’s do the first argument. This partial derivative is actually a double deriva-
tive, which means we need a squared bit on the top along with a caligraphic
L:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{}
\end{displaymath}

↓Input

4. The second argument is the zρi squared bit. This is a nested superscript
{z_i^\rho}^2:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{{z_i^\rho}^2}
\end{displaymath}

↓Input

5. We can do the next partial derivative in the same way. This one is slightly
easier to do:

↑Input
\begin{displaymath} \pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\end{displaymath}

↓Input

6. Delimiters also need to occur in pairs, like curly braces and \begin and \end,
so let’s do them next:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}

CHAPTER 9. MATHEMATICS 106

\left(
\right)

\end{displaymath}
↓Input

7. Now we need to do the bits inside the brackets. First of all we have yet another
partial derivative:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i}

\right)
\end{displaymath}

↓Input

8. Now we have a fraction:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i} \frac{\e^{v_i}}{1-\e^{v_i}}

\right)
\end{displaymath}

↓Input

9. This is followed by vi times another fraction:

↑Input
\begin{displaymath}
\pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i} \frac{\e^{v_i}}{1-\e^{v_i}}
+ v_i \frac{}{}

\right)
\end{displaymath}

↓Input

10. This fraction is quite complicated. The bottom part of the fraction is easier
than the top, so let’s do that first:

↑Input
\begin{displaymath} \pderiv{^2 \mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i} \frac{\e^{v_i}}{1-\e^{v_i}}
+ v_i \frac{}{(1-\e^{v_i})^2}

CHAPTER 9. MATHEMATICS 107

\right)
\end{displaymath}

↓Input

11. Now it’s time for the top part of the fraction. It’s a bit complicated, so let’s
break it down:

(a) The first term is:

\e^{v_i}

(b) The next term is another partial derivative:

\pderiv{v_i}{\rho_i}

(c) Then we have:

(1-\e^{v_i})

(d) Next we have to add on:

+\e^{2v_i}

(e) And finally we have the last term:

\pderiv{v_i}{\rho_i}

12. Putting it all together, we have:

↑Input
\begin{displaymath}
\pderiv{^2\mathcal{L}}{{z_i^\rho}^2} =
-\pderiv{\rho_i}{z_i^\rho}
\left(
\pderiv{v_i}{\rho_i} \frac{\e^{v_i}}{1-\e^{v_i}}
+ v_i \frac{\e^{v_i}\pderiv{v_i}{\rho_i}(1-\e^{v_i})

+\e^{2v_i}\pderiv{v_i}{\rho_i}}{(1-\e^{v_i})^2}
\right)
\end{displaymath}

↓Input

13. And remember that if you haven’t already defined \pderiv and \e, you will
need to do that in the preamble

↑Input

\newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\e}{\mathrm{e}}

↓Input

(Note that if we hadn’t defined these two commands, the code would have
had to have been far more complicated.)

CHAPTER 9. MATHEMATICS 108

9.3.9 Arrays

Mathematical structures such as matrices and vectors require elements to be ar-
ranged in rows and columns. Just as we can align material in rows and columns
in text mode using the tabular environment, we can do the same in maths mode
using the array environment. The array environment has the same format as the
tabular environment, however it must be in maths mode. Examples:

1. A simple array, all three columns are right justified:

↑Input

\begin{displaymath}
\begin{array}{rrr}
0 & 1 & 19\\
-6 & 10 & 200
\end{array}
\end{displaymath}

↓Input

↑Output

0 1 19
−6 10 200

↓Output

2. Let’s add some delimiters:

↑Input

\begin{displaymath}
\left(
\begin{array}{rrr}
0 & 1 & 19\\
-6 & 10 & 200
\end{array}
\right)
\end{displaymath}

↓Input

↑Output(
0 1 19
−6 10 200

)
↓Output

CHAPTER 9. MATHEMATICS 109

3. This example uses an invisible delimiter:

↑Input

\begin{displaymath}
f(x) =
\left\{
\begin{array}{rl}
-1 & x < 0\\
0 & x = 0\\
+1 & x > 0
\end{array}
\right.
\end{displaymath}

↓Input

↑Output

f(x) =

 −1 x < 0
0 x = 0

+1 x > 0

↓Output

9.3.10 Vectors

Vectors can be produced using the command:

\vec{variable} Definition

Example:

↑Input

\begin{displaymath}
\vec{x}
\end{displaymath}

↓Input

↑Output

~x

↓Output

These days it is customary to typeset vectors in bold. This can be done by
redefining the \vec command. You could use \mathbf, for example:

CHAPTER 9. MATHEMATICS 110

↑Input

\renewcommand{\vec}[1]{\mathbf{#1}}
\begin{displaymath}
\vec{x}\cdot\vec{\xi}
\end{displaymath}

↓Input

↑Output

x · ξ
↓Output

however, as you can see, the Greek letter ξ has not come out in bold. Here’s an
alternative (using \boldsymbol defined in the amsfonts package):

↑Input

\renewcommand{\vec}[1]{\boldsymbol{#1}}
\begin{displaymath}
\vec{x}\cdot\vec{\xi} = z
\end{displaymath}

↓Input

↑Output

x · ξ = z

↓Output

Exercise 23 (Maths: Vectors and Arrays)

Try to produce the following:

↑Output

Ax =
(

0 1
2 3

)(
1
2

)
=
(

2
8

)
= y

↓Output

As before, you can download or view the solution.

9.3.11 Mathematical Spacing

LATEX deals with mathematical spacing fairly well, but sometimes you may find
you want to adjust the spacing yourself. Available spacing commands are listed in
Table 9.12.

Exercise 24 (More Mathematics)

This exercise uses the spacing command \qquad. It also has a function name,
diag, and it uses the \forall and ellipses symbols. It also redefines the \vec

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths2.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths2.html

CHAPTER 9. MATHEMATICS 111

Table 9.12: Mathematical Spacing Commands

Command Example Input Example Output
AB AB

\thinspace or \, $A\,B$ AB
\medspace or \: $A\:B$ AB
\thickspace or \; $A\;B$ A B
\quad $A\quad B$ A B
\qquad $A\qquad B$ A B

\negthinspace or \! $A\!B$ AB
\negmedspace $A\negmedspace B$ AB
\negthickspace $A\negthickspace B$ AB

command, as was done in the previous section, and it uses delimiters and the array
environment, as well as using subscripts and superscripts.

Try to reproduce the following output:

↑Output

The set of linear equations:

aixi = bi ∀i = 1, . . . , n

can be written as a matrix equation:

diag(a)x = b

where x = (x1, . . . , xn)T , b = (b1, . . . , bn)T and

diag(a) =

a1 0 · · · 0

0 a2
. . .

...
...

. 0
0 · · · 0 an

↓Output

Again, you can download or view the solution.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths3.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/maths3.html

Chapter 10

Defining Environments

Just as you can define new commands, you can also define new environments. The
command

\newenvironment{env-name}[n-args][default]{begin-code}{end-code} Definition

is used to define a new environment. As with new commands, you can use the
optional argument n-args to define an environment with arguments, and default to
define an environment with an optional argument.

The first argument env-name is the name of your new environment. Remember
that the environment name must not have a backslash. The mandatory arguments
begin-code and end-code indicate what LATEX should do at the beginning and end
of the environment. Let’s first consider an example of an environment without any
arguments. Let’s make an environment called, say, exercise that prints Exercise
in bold and typesets the contents of the environment in italic. In other words, we
want the following code:

↑Input

\begin{exercise}
This is a sample.
\end{exercise}

↓Input

to produce the following output:

↑Output

Exercise
This is a sample.

↓Output

Let’s first consider what we want this environment to do: we can get the word
“Exercise” in bold by simply doing \textbf{Exercise}, and the italic font can be
obtained by using the itshape environment. So, at the start of our new environment
we need to do \textbf{Exercise} and we need to begin the itshape environment,
and at the end of our new environment we need to end the itshape environment:

↑Input

\newenvironment{exercise}% environment name
{\textbf{Exercise}\begin{itshape}}% begin code
{\end{itshape}}% end code

112

CHAPTER 10. DEFINING ENVIRONMENTS 113

↓Input

Let’s try it out:

↑Input

\begin{exercise}
This is a sample.
\end{exercise}

↓Input

Exercise This is a sample. Output

Not quite right. Let’s put a paragraph break after Exercise, and put one before it
as well. The command \par can be used to make a paragraph break:

↑Input

\newenvironment{exercise}% environment name
{\par\textbf{Exercise}\begin{itshape}\par}% begin code
{\end{itshape}}% end code

↓Input

Let’s have a look at the output now:

↑Output

Exercise
This is a sample.

↓Output

One more thing, we need to remove the paragraph indentation. This can be done
using the command \noindent:

↑Input

\newenvironment{exercise}
{\par\noindent\textbf{Exercise}\begin{itshape}\par\noindent}
{\end{itshape}}

↓Input

Now let’s modify our code so that the environment takes an argument. The
argument should indicate the exercise topic. For example, the following code:

↑Input

\begin{exercise}{An Example}
This is a sample.
\end{exercise}

↓Input

should produce the following result:

↑Output

Exercise (An Example)
This is a sample.

↓Output

CHAPTER 10. DEFINING ENVIRONMENTS 114

As with \newcommand, #1 is used to indicate the first argument. We can now
modify the code as follows (modifications are indicated like this):

↑Input

\newenvironment{exercise}[1]%
{\par\noindent\textbf{Exercise (#1)}\begin{itshape}\par\noindent}%
{\end{itshape}}

↓Input

Exercise 25 (Defining a New Environment)

If you did any of the exercises from Exercise 8 to Exercise 18, go back to the
document you created and define the exercise environment as in the example
above. Then try creating some exercises using this environment. You could, maybe,
put an exercise in the first chapter, and then another one in the second chapter.

Then try modifying the environment so that it puts a bit of vertical space before
and after the environment using \vspace{length}. Again you can download or view
an example.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newenv.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/newenv.html

Chapter 11

Counters

As we have seen, LATEX automatically generates numbers for chapters, sections,
equations etc. These numbers are stored in counters. The names of these counters
is usually the same as the name of the object with which it is associatated but
without any backslash. For example, the \chapter command has an associated
counter called chapter, the \footnote command has an associated counter called
footnote, the equation environment has an associated counter called equation,
the figure environment has an associated counter called figure and the table
environment has an associated counter called table. There is also a counter called
page that keeps track of the current page number.

The value of a counter can be displayed using the command

\thecounter Definition

where counter is the name of the associated counter. Note that counter does not
go in curly braces and adjoins \the (e.g. \thepage, \thesection, \thechapter).
Example:

↑Input

This page is Page~\thepage.
The current chapter is Chapter~\thechapter.

↓Input

This page is Page 115. The current chapter is Chapter 11. Output

New counters can be created using the command:

\newcounter{counter-name}[outer-counter] Definition

The mandatory argument counter-name is the name of your new counter (no back-
slash in the name). For example, let’s define a counter called exercise to keep
track of each exercise.

\newcounter{exercise} Input

we can now display the value of the counter using the command \theexercise. At
the moment the counter has the value zero, the value can be changed using one of
the following commands:

115

CHAPTER 11. COUNTERS 116

\stepcounter{counter} Increments counter by 1
\refstepcounter{counter} As above, but allows you to cross-

reference the counter using \label and
\ref

\setcounter{counter}{num} Sets the counter to num
\addtocounter{counter}{num} Adds num to counter

A couple of the commands above take a number num as one of the arguments. If
you want to use another counter for this argument, you need to use

\value{counter} Definition

For example, if you want to set our new exercise counter to the same value as the
page counter, you would do

\setcounter{exercise}{\value{page}} Input

Let’s go back to the exercise environment you created in Exercise 25. The exercises
really ought to have an associated number, and this number should be incremented
each time we use the exercise environment. So let’s modify our code to do this.
Modifications are illustrated like this:

↑Input

\newcounter{exercise}

\newenvironment{exercise}[1]%
{\refstepcounter{exercise}\vspace{10pt}\par\noindent
\textbf{Exercise \theexercise\ (#1)}
\begin{itshape}\par\noindent\vspace{10pt}}%
{\end{itshape}\vspace{10pt}\par}

↓Input

Note that the counter needs to be incremented before it is used. Since we’ve used
\refstepcounter instead of \stepcounter we can cross-reference our exercise
environment:

↑Input

Exercise~\ref{ex:simple} is a simple exercise.

\begin{exercise}{Simple Exercise}
\label{ex:simple}
This is a simple exercise.
\end{exercise}

↓Input

↑Output

Exercise 1 is a simple exercise.

Exercise 1 (Simple Exercise)
This is a simple exercise.

CHAPTER 11. COUNTERS 117

↓Output

The counter representation can be changed by redefining \theexercise using
the command \renewcommand. The following commands can be used to display the
counter:

\arabic{counter} Arabic number (1, 2, 3, . . .)
\Roman{counter} Uppercase Roman numeral (I, II, III, . . .)
\roman{counter} Lowercase Roman numeral (i, ii, iii, . . .)
\alph{counter} Lowercase letter (a, b, c, . . . , z)
\Alph{counter} Uppercase letter (A, B, C, . . . , Z)
\fnsymbol{counter} A footnote symbol (∗ † ‡ § ¶ ‖ ∗∗ †† ‡‡)

For example, to make the chapter numbers appear as uppercase Roman numerals
you would do:

\renewcommand{\thechapter}{\Roman{chapter}} Input

You may have noticed that \newcounter has an optional argument outer-counter.
This is for use if you require the new counter to be reset every time outer-counter is
incremented. For example, the section numbers in the report class are dependent
on the chapter numbers. Each time a new chapter is started, the section numbers
are reset. Suppose we want our exercise counter to be dependent on the chapter
counter, we would do

\newcounter{exercise}[chapter] Input

We now need to modify \theexercise so that it includes the chapter number:

\renewcommand{\theexercise}{\thechapter.\arabic{exercise}} Input

Notice the use of \thechapter instead of, say, \arabic{chapter}. By using
\thechapter we don’t need to keep track of the chapter counter format.

Exercise 26 (Using Counters)

Modify the document from Exercise 25 so that the exercise environment has
a counter. Make the counter dependent on the chapter. You can download or view
an example.

http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/counters.tex
http://theoval.cmp.uea.ac.uk/~nlct/latex/novices/exercises/counters.html

Chapter 12

Lengths

Lengths are commands that store dimensions (such as 1in, 5cm, 8.25mm.) These
are used to determine page layouts etc. For example, the page width is given
by the length \pagewidth, and the height of the main body of text is given by
\textheight. The paragraph indentation is given by \parindent and the gap
between paragraphs is given by \parskip. Acceptable units of measurement are
shown in Table 12.1.

Example: The default paragraph indentation \parindent is usually around
15pt, but we can change this if we like. To change a length you need to use the
command:

\setlength{cmd}{length} Definition

where cmd is the particular length command (e.g. \parindent) and length is the
new length. To display the value of a length do:

\thecmd Definition

Example:

↑Input

\setlength{\parindent}{0pt}

This is the first paragraph.

Table 12.1: Units of Measurement

pt point: 72.27pt = 1in
in inch: 1in = 25.4mm
mm millimetre: 1mm=2.845pt
cm centimetre: 1cm = 10mm
ex height of the letter x in the current font
em width of the letter M in the current font
sp scaled point: 1sp = 65536pt
bp big point (or PostScript point): 72bp = 1in
dd didôt point: 1dd=0.376mm
pc pica: 1pc=12pt
cc cicero: 1cc=12dd
mu math unit: 18mu = 1em

118

CHAPTER 12. LENGTHS 119

This is the second paragraph.
The paragraph indentation is \the\parindent.

↓Input

↑Output

This is the first paragraph.
This is the second paragraph. The paragraph indentation is 0.0pt.

↓Output

A rubber length is a length that has a certain amount of elasticity. This enables
you to specify your desired length with a certain amount of flexibility that will allow
LATEX to stretch or contract the text to get the body of text as flushed with the
margins as possible.

For example, the paragraph gap \parskip is usually set to 0pt plus 1pt. This
means that the prefered gap is 0pt but LATEX can stretch it up to 1pt to help prevent
the page from having a ragged bottom. Let’s further modify the above example:

↑Input

\setlength{\parindent}{0pt}
\setlength{\parskip}{10pt plus 1pt minus 1pt}

This is the first paragraph.

This is the second paragraph.
The paragraph indentation is \the\parindent.

↓Input

↑Output

This is the first paragraph.

This is the second paragraph. The paragraph indentation is 0.0pt.

↓Output

In this example, the prefered paragraph gap is 10pt but it will allow for a deviation
of up to plus or minus 1pt.

If you want to change any of the page layout lengths (such as \textwidth),
the easiest way to do it is to use the geometry package. This package should have
been installed when you installed MiKTeX, and the documentation should be in one
of the subdirectories of \texmf\doc\latex. Using an example from the geometry
documentation: suppose you want the total text area to be 6.5in wide and 8.75in
high, with a left margin 0.4in from the left edge, no header, and the first line of the
page to be 1.2in from the top of the paper, then you would do:

\usepackage[body={6.5in,8.75in},top=1.2in,left=0.4in,nohead]{geometry}

Chapter 13

Common Errors

• If the only message that gets printed to the screen is:

Bad command or file name

then you have either mistyped the command name, or you don’t have LATEX
installed on your computer, or your path hasn’t been set up correctly. First
check that you have typed the command correctly, then check to see if you
have MiKTeX installed. Failing that, contact your system adminstrator for
help.

• If you get the message (or something similar):

This is TeX, Version 3.14159 (Web2C 7.3.1)
! I can’t find file ‘sample’.
<*> sample

Please type another input file name:

then you have either misspelt the filename or you are in the wrong directory. If
you have misspelt the filename, simply type in the correct name at the prompt.
If you are in the wrong directory or you want to quit, type X followed by the
return character � . This is an error that you may encounter if you are
using notepad and the MS-DOS Prompt, as typing errors may occur, or you
may forget to change to the correct directory. To check you are in the right
directory, you can type:

dir

at the MS-DOS prompt. This will list the contents of the directory. If you
are certain that you have spelt the filename correctly and that you are in the
right directory, there may be something wrong with your path, in which case
contact your system administrator. You are unlikely to get this error with
WinEdt or TeXnicCenter as they set the directory, and you only need to click
a button, so you won’t get any typing errors.

• Error messages will usually look something like:

! Undefined control sequence.
l.1 \docmentclass

[a4paper,11pt]{article}
?

120

CHAPTER 13. COMMON ERRORS 121

The first line is the error message. In this example I have misspelt the com-
mand \documentclass. The next line begins with l. followed by a number.
This is the line number in the source code where the error occurred. In this
case the error occurred on line 1. Following the line number is the line LATEX
has processed so far, and staggered on the following line is the remainder of
the input line.

Here’s another example. Suppose line 8 of my source code looks like:

The date today is: \toady, which is nice to know.

The error in this case is the misspelling of the command \today. The error
message will appear as follows:

! Undefined control sequence.
l.8 The date today is: \toady

, which is nice to know.
?

�
�
��

Line
number

Error Message���9

� Rest of line6

This is how far LATEX has got
�
�
��

Error
@
@
@I

LATEX Prompt

At the LATEX prompt, you can either type h for a help message, or type x to
exit LATEX and go back to your source code and fix the problem.

There follows below a list of common error messages.

13.1 * (No message, just an asterisk prompt!)

You’ve gone into TEX! This is probably because you’ve forgotten the \end{document}.
The asterisk is the TEX prompt. At this point the best thing to do is type
\end{document} at the prompt (followed by the return character �) and hope
for the best.

13.2 Argument of \cline has an extra }
If this error occurred on the first line in your tabular environment, you may have
forgotten the argument to the tabular environment.

13.3 Argument of \multicolumn has an extra }
If this error occurred on the first line in your tabular environment, you may have
forgotten the argument to the tabular environment.

13.4 \begin{. . . } ended by \end{. . . }
The beginning of your environment doesn’t have a matching end.

• Check to make sure you have spelt the name of the environment correctly.

You will get this error message if you do, say,

\end{docment} (incorrect)

CHAPTER 13. COMMON ERRORS 122

instead of

\end{document} (correct)

• Check that for every \begin you have a corresponding \end with the same
name.

13.5 Bad math environment delimiter

Only a certain type of character may be used as a delimiter (e.g. () [] \{ \}
| \| .), check which one you have specified. This error may also occur if you
have forgotten a \right (Remember to use a . if you want an invisible delimiter)
or you may have forgotten to end your array environment with \end{array}

13.6 Can only be used in preamble.

Some commands, such as \usepackage may only appear in the preamble. Check
to see where you have put it. For example, this error will be caused by doing:

\documentclass[a4paper]{article}

\begin{document}

\usepackage{graphicx}

(incorrect)

instead of

\documentclass[a4paper]{article}

\usepackage{graphicx}

\begin{document}

(correct)

13.7 Command . . . already defined

You have tried to define a command which already exists. Try giving it a differ-
ent name. Remember never to redefine a command if you don’t know what the
command originally does.

Alternatively, you have tried to define an environment which already exists.
Give the new environment a different name. Again, never redefine an environment
where you don’t know what the original environment does.

13.8 Display math should end with $$

You may have a dollar sign ($) in a displaymath or equation environment. Re-
member that $ is short hand for \begin{math} or \end{math}, so you can’t end
one of the other environments with a $.

13.9 Environment . . . undefined.

LATEX doesn’t recognise the environment you have specified.

CHAPTER 13. COMMON ERRORS 123

• Check you have spelt the environment name correctly.

You will get this error if you do, say,

\begin{docment} (incorrect)

instead of

\begin{document} (correct)

• If it’s your own environment, check you have defined the environment before
using it.

• If the environment is defined in a package, check you have included the package
using the \usepackage command.

13.10 Extra alignment tab has been changed to
\cr

You have too many ampersands (&) in one row. The most probable cause is that
you have forgotten the end of row command \\ on the previous row. Remember
also that if you have a \multicolumn command to span more than one column, you
should have fewer &s in that row.

13.11 Extra \right

There are a number of possible causes. The most probable is that you have a
\right that doesn’t have a matching \left. (Remember left comes before right.)
Another possible cause is that you have missed out \end{array}. (Remember that
environments provide implicit grouping, and \left and its matching \right must
appear within the same group level.)

13.12 File ended while scanning use of . . .

The most usual cause of this error is a missing closing brace.
You will get this error if you do, say,

\end{document (incorrect)

instead of

\end{document} (correct)

13.13 File not found.

LATEX can’t find the file you have specified. You will be given the opportunity to
type in the correct filename at the prompt. If you want to quit, simply type X
followed by the return character � .

• Make sure that you have spelt the filename correctly.

This error will be caused by, say,

\documentclass[a4paper]{artcle} (incorrect)

CHAPTER 13. COMMON ERRORS 124

instead of

\documentclass[a4paper]{article} (incorrect)

If this is the case, simply type in the correct name at the prompt (followed
by the return character �)

• Make sure that the file is in the same directory as your document or in the
LATEX path. If the file is in another directory (not in the LATEX path), you will
need to specify the pathname, but remember that when using LATEX under
Windows, you need to use a forward slash (/) as the directory divider, as a
backslash would be interpreted as a command. For example, if you have a file
called shapes.ps in the subdirectory pictures then you would get a ‘file not
found’ error message if you did

\includegraphics{shapes.ps} (incorrect)

instead of \includegraphics{pictures/shapes.ps} (correct)

• If the file is a package or class file, it’s possible that you don’t have that file
installed on your computer. If this is the case you will need to download and
install it as described in Section 6.2. Remember that you need to refresh the
database after installing a new package or class file.

13.14 Illegal character in array arg

You have used a character in the argument of a tabular or array environment
that is not allowed. The standard available characters are: r (right justified), l
(left justified) and c (centred). This error will also occur if you have forgotten the
argument to the tabular or array environment.

13.15 Illegal parameter number in definition

You have referred to a parameter (argument) number that is greater than the num-
ber of paramters you have specified. For example, suppose you defined the command
to have only one parameter, then you can’t use #2 which refers to the second, non-
existent, parameter. Remember that you need to specify how many parameters you
want in the optional argument to \newcommand, otherwise it will be assumed that
the command has no arguments.

13.16 Illegal unit of measure (pt inserted).

You have either not specified a unit when giving a length (even zero lengths must
have a unit) or you have specified an invalid unit or you have misspelt the unit.
Available units are listed in Table 12.1

13.17 Lonely \item

The command \item may only appear in one of the list making environments (such
as itemize). Make sure you haven’t forgotton your environment.

CHAPTER 13. COMMON ERRORS 125

13.18 Misplaced alignment tab character &

You have used the special character & where you shouldn’t have. Recall from Sec-
tion 4.2 that if you want an & sign to appear you need to do \& not just &.

You would have got this error message if you had done, say,

& our equipment (wrong)

instead of

\& our equipment (correct)

13.19 Missing } inserted

You have missed a closing curly brace, or you may have missed out an argument.
Example: if the following line occurs in a tabular environment:

& \multicolumn{2}{c}\\

this will produce the error. (The third argument to \multicolumn has been omit-
ted.)

13.20 Missing $ inserted

This message can be caused by a number of errors:

• You may have typed $ instead of \$ (you actually want a dollar symbol to
appear). Recall from Section 4.2 that if you want a $ sign to appear you need
to do \$ not just $.

You would have got this error message if you had done, say,

expenditure came to $2000.00 (wrong)

instead of

expenditure came to \$2000.00 (correct)

• You might have missed the beginning of one of the mathematics environments
(that is, you’ve used a command that must only appear in maths mode).

• You may have missed the end of a mathematics environment, or you may have
a paragraph break within a math, displaymath or equation environment,
which is not permitted. Make sure you don’t have any blank lines within the
environment. If you want a blank line in your code to make it easier to edit,
try having a percent sign at the start of an empty line to ensure that the line
is ignored by LATEX. For example:

\begin{equation}
%
E = mc^2
%
\end{equation}

CHAPTER 13. COMMON ERRORS 126

13.21 Missing \begin{document}
You have put some text outside of the document environment. Check the following:

• You have remembered \begin{document}

This error would be caused by, say,

\documentclass[a4paper]{article}
This is a simple document

(incorrect)

instead of

\documentclass[a4paper]{article}
\begin{document}
This is a simple document

(correct)

• You haven’t placed any text before \begin{document}. For example:

\documentclass[a4paper]{article}
This is a simple document
\begin{document}

(incorrect)

instead of

\documentclass[a4paper]{article}
\begin{document}
This is a simple document

(correct)

• You haven’t missed out a backslash from either \documentclass or
\begin{document}

This error would be caused by, say,

documentclass[a4paper]{article} (incorrect)

instead of

\documentclass[a4paper]{article} (incorrect)

13.22 Missing delimiter

You have forgotten to specify the type of delimiter you want (e.g. () [] \{ \}
| \| .) (Remember to use a . if you want an invisible delimiter, and remember
that if you want a curly brace, you must have a backslash followed by the curly
brace.)

Example:
f(x) = \left{
\begin{array}{ll}
0 & x \leq 0\\
1 & x > 1
\end{array}
\right.

(incorrect)

instead of

CHAPTER 13. COMMON ERRORS 127

f(x) = \left\{
\begin{array}{ll}
0 & x \leq 0\\
1 & x > 1
\end{array}
\right.

(correct)

13.23 Missing \endcsname inserted

This is a TEX error rather than a LATEX error which makes it harder to determine
the cause, however it can be caused by placing a backslash in front of the name of
an environment. (Remember that environment names do not contain a backslash.)

This error will be caused by, say,

\begin{\sffamily} (incorrect)

instead of

\begin{sffamily} (correct)

13.24 Missing \endgroup inserted

A number of things could have caused this. You may have missed out the end of an
environment, or you may have an environment inside of another environment it’s
not allowed to be in. For example, this error can be caused by placing an eqnarray
environment inside a displaymath environment, which is not allowed.

13.25 Missing number, treated as zero

LATEX is expecting a number. If your command takes more than one argument,
check to make sure the arguments are in the correct order. For example, if you are
using a minipage environment, you might have omitted the mandatory argument
which specifies the width of the minipage, or you may have the optional arguments
the wrong way round. The placement specifier should come first, followed by the
height.

If you are using \addtocounter or \setcounter remember that the second
argument must be a number, so if you want the value of a counter as the argument
you must use \value. This error can be caused by, say,

\setcounter{exercise}{chapter} (incorrect)

instead of

\setcounter{exercise}{\value{chapter}} (correct)

13.26 Paragraph ended before \begin was com-
plete

You’ve probably missed a closing brace at the end of the argument to \begin. This
error will be caused by, say,

\begin{document (incorrect)

CHAPTER 13. COMMON ERRORS 128

instead of

\begin{document} (correct)

13.27 Runaway argument

There are a number of possible causes of this error:

• Paragraph breaks are not permitted in many command arguments. You
should use the corresponding environment if possible. For example, this error
message will be generated by doing, say,

\textbf{This is a simple document.
Here is the first paragraph.

Here is the second paragraph.}

(incorrect)

instead of

\begin{bfseries}
This is a simple document.
Here is the first paragraph.

Here is the second paragraph.
\end{bfseries}

(correct)

• The closing brace of a mandatory argument is missing: This error will be
caused by, say,

\title{A Simple Document (incorrect)

instead of

\title{A Simple Document} (correct)

• This error can also be caused by omitting the mandatory argument of an
environment. For example:

\begin{thebibliography}
\bibitem{kopka95} A Guide to \LaTeX2e: document

(incorrect)

instead of

\begin{thebibliography}{1}
\bibitem{kopka95} A Guide to \LaTeX2e: document

(correct)

13.28 Something’s wrong–perhaps a missing \item.

You may have missed an \item command. The first object in a list environment
must either be an \item command, or another list environment.

This error will be caused by, say,

\begin{itemize}
Animal
\item Vegetable
\item Mineral
\end{itemize}

(incorrect)

CHAPTER 13. COMMON ERRORS 129

instead of

\begin{itemize}
\item Animal
\item Vegetable
\item Mineral
\end{itemize}

(correct)

This error can also be caused by a missing \bibitem in the bibliography. For
example:

\begin{thebibliography}{1}
A Guide to \LaTeX2e: document

(incorrect)

instead of

\begin{thebibliography}{1}
\bibitem{kopka95} A Guide to \LaTeX2e: document

(correct)

13.29 There’s no line here to end.

You have placed a line breaking command (\\, \newline or \linebreak) where it
doesn’t make sense to have one.

13.30 Undefined control sequence

LATEX doesn’t understand the command you have used.

• Check to see if you have misspelt the command name (remember that all
LATEX command names are case-sensitive.)

You will get this error if you do, say,

This is a simple \Latex\ document (incorrect)

instead of

This is a simple \LaTeX\ document (correct)

• Check that you have remembered the space when typing \ . For example:

This is a simple \LaTeX\document (incorrect)

instead of

This is a simple \LaTeX\ document (correct)

• If you are using a command that is defined in a package make sure you have
included the package using \usepackage.

• Check that your command name hasn’t run into the next piece of text. For
example, you can do

man{\oe}uvre

or

man\oe uvre

CHAPTER 13. COMMON ERRORS 130

or

man\oe{}uvre

but not

man\oeuvre

• You have used a backslash instead of a forward slash as a directory divider.
(Remember that when using LATEX under Windows, you need to use a forward
slash (/) as the directory divider, as a backslash would be interpreted as a
command.)

For example, suppose you have a file called shapes.ps in a subdirectory called
pictures, then you would get an error if you did

\includegraphics{pictures\shapes.ps} (Incorrect)

instead of

\includegraphics{pictures/shapes.ps} (Correct)

13.31 You can’t use ‘macro parameter character
#’ in horizontal mode

You have used the special character # where you shouldn’t have. Recall from Sec-
tion 4.2 that if you want a # sign to appear you need to do \# not just #.

This error message will be caused by doing, say,

Item #1 (Incorrect)

instead of

Item \#1 (Correct)

Bibliography

[1] “LATEX : a document preparation system”, Leslie Lamport, 2nd edition (updated
for LATEX2ε), Addison-Wesley (1994). (Cited on pages 2 and 62.)

[2] “A guide to LATEX2ε: document preparation for beginners and advanced users”,
Helmut Kopka and Patrick W. Daly, Addison-Wesley (1995). (Cited on pages 2,
44, 55, 57, 62, 80, 87 and 102.)

[3] “The LATEX companion”, Michel Goossens, Frank Mittelbach and Alexander
Samarin, Addison-Wesley (1994). (Cited on pages 2, 44, 55, 56, 57, 63, 80, 83,
87 and 102.)

[4] “The LATEX graphics companion”, Michel Goossens, Sebastian Rahtz and Frank
Mittelbach, Addison-Wesley (1997). (Cited on pages 3, 63, 64 and 68.)

[5] “The LATEX web companion”, Michel Goossens and Sebastian Rahtz with Eitan
Gurari, Ross Moore and Robert Sutor, Addison-Wesley (1999). (Cited on
pages 3 and 11.)

[6] The TEX Archive. http://www.tex.ac.uk/ (Cited on pages 11, 19, 28, 68
and 131.)

I would strongly recommend that you have a look at the TEX Archive [6], par-
ticularly the Frequently Asked Questions and the On-Line Catalogue. It’s also a
good idea to look at the documentation that was installed with your TEX/LATEX
distribution, which will usually be located in the directory c:\texmf\doc, and the
on-line help via the Start Menu:

Start → Programs → MiKTeX → Help

131

http://www.tex.ac.uk/
http://www.tex.ac.uk/tex-archive/help/Catalogue/catalogue.html

Index
Page numbers in italic indicate the principle definition.

\! 111
!‘ 35
\" 36
’ 35
\’ 36
” 35
(103
\(85
) 103
\) 85
\, 111
- 35
-- 35
--- 35
. 102
\. 36
/ 103
\: 111
\; 111
\= 36
?‘ 35
[7, 103
34, 78, 114
\# 35
$ 34, 86
\$ 35
% 34
\% 35
& 34, 59, 60
\& 35
^ 34, 89, 92, 93
\^ 36

34, 89, 92, 93
\ 35
{ 5, 34
\{ 35, 103
| 103
\| 103
} 5, 34
\} 35, 103
\\ 7, 8, 59, 60
\ 34
\~ 36
~ 34, 51, 72

] 7, 103
‘ 35
\‘ 36
“ 35

A

\AA 36
\aa 36
abstract 44, 46, 59
abstract environment 46, 46, 58
\abstractname 84
Acrobat 11
Acrobat 11, 19
Acrobat Reader 2
\addtocounter 116, 127
\AE 36
\ae 36
align environment 87
\Alph 117
\alph 117
\alpha 90
\amalg 100
\appendix 48
\appendixname 84
\approx 99
\arabic 117
\arccos 92
\arcsin 92
\arctan 92
\arg 92
argument 6

mandatory 6, 31
optional 7, 31

array environment108, 108, 111, 124
\ast 100
\asymp 99
\author 45
auxiliary file (.aux) 53

B

\b 36
\backslash 103
\begin 9, 104, 127

132

INDEX 133

\beta 90
\bfseries 5, 6, 8, 43
bfseries environment 9
\bibitem 54, 56
\bibname 84
\bigcap 100
\bigcirc 100
\bigcup 100
\bigodot 100
\bigoplus 100
\bigotimes 100
\bigsqcup 100
\bigtriangledown 100
\bigtriangleup 100
\biguplus 100
\bigvee 100
\bigwedge 100
\bmod 93
\boldsymbol 89, 110
\bowtie 99
\bullet 100

C

\c 36
\cap 100
\caption 71, 71
\cdot 100
\cdots 101
center environment 73
\centerline 71, 74
\chapter 5, 6, 47, 47–49, 115
\chaptername 84
\chi 90
\circ 100
\cite 55, 55
class file options

10pt . 31
11pt . 31
12pt . 31
a4paper 5, 31
oneside . 59
twocolumn 31

class files (.cls)10, 31, 32, 44, 46, 47
article 5, 31, 47, 48, 59
book . 31, 46
letter 31, 46
report . . . 31, 46–48, 58, 59, 117
slides .31

\clearpage 58
command 5–8, 10
compulsory argument see argument,

mandatory
\cong 99

\contentsname 84
\coprod 100
\copyright 35
\cos 92
\cosh 92
\cot 92
\coth 92
counters 115

chapter 115, 117
equation 115
figure . 115
footnote 115
page . 115
table . 115

\csc 92
\cup 100
\currenttime 69

D

\d 36
\dag 35, 82
\dagger 100
\dashv 99
\date 45, 45
\ddag 35
\ddagger 100
\ddots 101
declaration 6, 8, 60
\DeclareGraphicsExtensions 65
\deg 92
\Delta 90
\delta 90
description environment 37, 41
\det 92, 92
\diamond 100
\dim 92
dinglist environment 83
displayed maths 85
displaymath environment 86, 86, 87,

105, 122, 125, 127
\div 100
document environment 9, 31, 32
\documentclass 5, 9, 10, 31, 31, 64
\doteq 99
\Downarrow 100, 103
\downarrow 100, 103
DVI (.dvi) 5, 11, 19, 28, 33, 80
dvips 19, 26

E

ellipses (omission marks) 101
\em 43, 44

INDEX 134

em environment 44
em dash — 35
\emph 43, 44
en dash – 35
\end 9, 104
enumerate environment37, 39, 39, 52
environment 9, 10, 43
\epsilon 90
eqnarray environment 87, 127
equation environment 86, 86, 87,

115, 122, 125
\equiv 99
\eta 90
\exp 92

F

ffi 36
ffl 36
fi 36
figure environment 71, 72, 115
\figurename 84
fl 36
\fnsymbol 117
\footnote 33, 115
\footnotesize 44
\forall 101, 110
\frac 95
\framebox 8
\frown 99

G

\Gamma 5, 90
\gamma 5, 90
\gcd 92, 92
\ge 99
\geq 99
\gets 100
\gg 99
grouping 5, 6, 8
GSView 11, 19, 30, 68

H

\H 36
\hom 92
\hookleftarrow 100
\hookrightarrow 100
\hspace 73
\Huge 44
\huge 44
hyphen - 35

I

\i 35, 35
\in 99
in-line maths 85
\includegraphics 65, 71
\index 79
\indexname 84
\inf 92, 92
\infty 93
\int 100
\iota 90
\item 9, 37, 41, 54, 124
itemize environment 9, 37, 37, 39,

41, 82, 124
\itshape 43, 44
itshape environment 43, 44, 112

J

\j 35, 35

K

\kappa 90
\ker 92

L

\L 36
\l 36
\label 51, 51, 53, 54, 71, 73, 87, 116
\labelitemi 82
\labelitemii 82
\labelitemiii 82
\labelitemiv 82
\Lambda 90
\lambda 90
\langle 103
\LARGE 44
Large environment 43
\Large 44
\large 44
\LaTeX 5, 33, 34
\lceil 103
\ldots 35, 101
\le 99
\left 102, 102
\Leftarrow 100
\leftarrow 100
\leftharpoondown 100
\leftharpoonup 100
\Leftrightarrow 100
\leftrightarrow 100

INDEX 135

lengths 118
\leq 99
\lfloor 103
\lg 92
\lim 92, 92, 93
\liminf 92, 92
\limsup 92, 92
\listfigurename 84
\listoffigures 72
\listoftables 75
\listtablename 84
\ll 99
\ln 92
\log 92
\Longleftarrow 100
\longleftarrow 100
\Longleftrightarrow 100
\longleftrightarrow 100
\longmapsto 100
\Longrightarrow 100
\longrightarrow 100

M

\makeindex 79
makeindex 80, 81
\maketitle 45, 46, 49
mandatory argument see argument,

mandatory
\mapsto 100
\markboth 58
\markright 59
math environment 85, 125
\mathbb 89
\mathbf 88, 109
\mathcal 88, 94
\mathfrak 89
\mathit 88
\mathrm 88
\mathsf 88
\mathtt 88
\max 92, 92
\mbox 88
\mdseries 43
\medspace 111
\mid 99
MiKTeX 5, 11, 69
MiKTeX Options 69
\min 92, 92, 93
minipage environment 127
mktexlsr 69
\models 99
\mp 100

MS-DOS Prompt 12, 19, 28, 68, 69, 80,
120

\mu 90
\multicolumn 61, 61, 62, 125

N

\nearrow 100
\negmedspace 111
\negthickspace 111
\negthinspace 111
\neq 99
\newcommand 77, 77, 78, 81, 82, 114
\newcounter 115, 117
\newenvironment 112
\ni 99
\noindent 113
\normalfont 43
\normalsize 44
\not 99
notepad 12, 19, 28, 120
\notin 99
\nu 90
\nwarrow 100

O

\O 36
\o 36
\odot 100
\OE 36
\oe 35, 36
\oint 100
\Omega 90
\omega 90
\ominus 100
\operatorname 93
\operatornamewithlimits 93, 93
\oplus 100
optional argument see argument,

optional
\oslash 100
\otimes 100
output file see DVI (.dvi)

P

\P 35
packages (.sty) 64

amsfonts 88, 89, 110
amsmath 88, 89, 93
color . 79
colortbl . 63
datetime 68–70

INDEX 136

geometry 119
graphicx 64, 66–68, 71
hyperref 3, 69
makeidx . 79
multirow . 63
pifont .83
subfigure 72, 73
ukdate .68

page numbering
Alph . 57
alph . 57
arabic .57
Roman . 57
roman . 57

page style
empty . 58, 59
headings58, 59
myheadings 58
plain . 58, 59

\pagenumbering 57
\pageref 51, 53
\pagestyle 58, 59
\pagewidth 118
\par 113
\paragraph 47
paragraph break 32
paragraph indentation 32
\parallel 99
parameter see argument
\parindent 118
\parskip 118, 119
\part 47
\partial 97
\partname 84
PDF 19, 71
PDFLATEX 19, 26, 30, 67
pdftops 64
\perp 99
\Phi 90
\phi 90
\Pi 90
\pi 90
\pm 100
\pmb 89
\pmod 93
pnmtops 64
PostScript 11, 19, 21, 28, 64–66, 68,

71, 80, 83, 118
\pounds 35, 61
\Pr 92, 92
preamble 9, 68
\prec 99
\preceq 99
\printindex 79

\prod 100
\propto 99
\Psi 90
\psi 90

Q

\qquad 110, 111
\quad 111

R

\rangle 103
\rceil 103
\ref 51, 53, 71, 87, 116
\reflectbox 67
\refname 84
\refstepcounter 116, 116
\renewcommand 82, 84, 117
\resizebox 67
\rfloor 103
\rho 90
\right 102, 102
\Rightarrow 100
\rightarrow 5, 100
\rightharpoondown 100
\rightharpoonup 100
\rightleftharpoons 100
\rmfamily 43
\Roman 117
\roman 117
\rotatebox 66
rubber length 119

S

\S 35
\sb 89, 89
\scalebox 66
\scriptsize 44
\scshape 43
\searrow 100
\sec 92
\section 47, 47–49, 71
\setcounter 116, 127
\setlength 118
\setminus 100
\sffamily 43
\Sigma 90
\sigma 90
\sim 99
\simeq 99
\sin 92
\sinh 92

INDEX 137

\slshape 43
\small 44
\smile 99
source code 5, 11, 31–33
\sp 89, 89
spaces 32
\sqcap 100
\sqcup 100
\sqrt 97
\sqsubseteq 99
\sqsupseteq 99
\SS 36
\ss 36
\star 100
\stepcounter 116, 116
\subfigure 73, 73
\subparagraph 47
\subsection 47
\subset 99
\subseteq 99
\subsubsection 47
\succ 99
\succeq 99
\sum 100
\sup 92, 92
\supset 99
\supseteq 99
\swarrow 100

T

\t 36
table environment 74, 115
table of contents file (.toc) 49
\tablename 84
\tableofcontents 49, 49, 72
tabular environment 59, 60, 62, 74,

75, 108, 121, 124
\tan 92
\tanh 92
\tau 90
teTeX 11
TEX 10
texhash 69
TeXnicCenter 12, 19, 32, 33, 36, 68,

81, 120
\text 88
\textasciicircum 35
\textasciitilde 35
textbackslash 35
\textbf 6, 43, 88
\textheight 118
\textit 43, 44
\textmd 43

\textnormal 43
\textregistered 35
\textrm 43, 88
\textsc 43
\textsf 43
\textsl 43
\texttrademark 35
\texttt 43
\textup 43
\textwidth 119
\the 115, 118
thebibliography environment 54,

56, 57
\thechapter 115, 117
\thepage 115
\thesection 115
\Theta 90
\theta 89, 90
\thickspace 111
\thinspace 111
\thispagestyle 58
tiff2ps 64
\times 100
\tiny 44
title 59
\title 45
\to 93, 100
\today 5, 33, 34, 68, 69, 76
\triangleleft 100
\triangleright 100
\ttfamily 43
\twocolumn 5

U

\u 36
\Uparrow 100, 103
\uparrow 100, 103
\Updownarrow 100, 103
\updownarrow 100, 103
\uplus 100
\upshape 43
\Upsilon 90
\upsilon 90
\usepackage 64, 64, 69

V

\v 36
\value 116, 127
\varepsilon 90
\varphi 90
\varpi 90
\varrho 90

INDEX 138

\varsigma 90
\vartheta 89, 90
\vdash 99
\vdots 101
\vec 109, 109, 110
\vee 100
\vspace 75, 114

W

\wedge 100
WinEdt 12, 19, 28, 33, 68, 81, 120
\wr 100

X

xdvi 5
\Xi 90
\xi 90

Y

YAP 5, 11–13
\yen 35

Z

\zeta 90

	Introduction
	Recommended Reading

	Some Definitions
	Source Code
	DVI File (or Output File)
	Commands (also called ``Macros'' or ``Control Sequences'')
	Grouping
	Arguments (also called ``Parameters'')
	Mandatory Arguments
	Optional Arguments

	Declarations
	Environments
	Preamble
	Class File
	TeX

	From Source Code to Typeset Output
	Notepad, MS-DOS Prompt, YAP
	TeXnicCenter
	WinEdt

	Creating a Simple Document
	Using Simple Commands
	Special Characters and Symbols
	Lists
	Unordered Lists
	Ordered Lists
	Description Environment

	Simple font changing commands

	Creating Chapters, Sections etc
	Author and title information
	Abstract
	Sections, Subsections …
	Creating a Table of Contents
	Cross-Referencing
	Creating a Bibliography
	Page Styles and Page Numbering
	Aligning Material in Rows and Columns

	Packages
	Using Packages
	graphicx Package
	Changing the format of \today

	Downloading and Installing Packages

	Figures and Tables
	Figures
	Subfigures

	Tables

	Defining Commands
	Defining Commands with an Optional Argument
	Redefining Commands

	Mathematics
	In-Line Mathematics
	Displayed Mathematics
	Mathematical Commands
	Maths Fonts
	Greek Letters
	Subscripts and Superscripts
	Functional Names
	Fractions
	Roots
	Mathematical Symbols
	Delimiters
	Arrays
	Vectors
	Mathematical Spacing

	Defining Environments
	Counters
	Lengths
	Common Errors
	* (No message, just an asterisk prompt!)
	Argument of \cline has an extra }
	Argument of \multicolumn has an extra }
	\begin{…} ended by \end{…}
	Bad math environment delimiter
	Can only be used in preamble.
	Command … already defined
	Display math should end with $$
	Environment … undefined.
	Extra alignment tab has been changed to \cr
	Extra \right
	File ended while scanning use of …
	File not found.
	Illegal character in array arg
	Illegal parameter number in definition
	Illegal unit of measure (pt inserted).
	Lonely \item
	Misplaced alignment tab character &
	Missing } inserted
	Missing $ inserted
	Missing \begin{document}
	Missing delimiter
	Missing \endcsname inserted
	Missing \endgroup inserted
	Missing number, treated as zero
	Paragraph ended before \begin was complete
	Runaway argument
	Something's wrong--perhaps a missing \item.
	There's no line here to end.
	Undefined control sequence
	You can't use `macro parameter character #' in horizontal mode

	Bibliography
	Index

