
The fine art of computer
programming

Free software and the future of literate programming

Matt Barton

T
he free software and open source communi-
ties are changing what it means to write code.
Specifically, they are extending its audience
from a few fellow employees to, theoretically,

anyone in the world who wants to read it. Code isn’t just for
computers and colleagues anymore and, gradually, we are
seeing the beginnings of a body of literary critics and an ap-
preciative readership for source code. What is happening is
the gradual realization thatreading code can be enjoyable,
that code can beartistic as well as correct, and that in the
decades ahead some coders will emerge as true artists of an
exciting new literary genre. Code is becoming artistic and
it’s the free software and open source movements that are
making this possible.

Reading code for pleasure

Diomidis Spinellis, author ofCode Reading: The Open
Source Perspective,is one of the first of what we will come
to know as the literary critics of code. His book is unlike
any other programming book that came before it and for a
very exciting reason. What makes it unique is that Spinellis
is teaching us how toread source code instead of merely
how to write it. Spinellis hopes that after reading his book,
“You may read code purely for your own pleasure, as lit-
erature” (2). What I want to emphasize here is that word
pleasure. As long as we merely view code as something
practical; as ameansdesigned, for better or worse, to reach
certain practicalends, then we will never see the flourishing

of the literature that Spinellis describes. What must happen
first is the cultivation of a new audience for code. We desire
a readership that derives a different sort of pleasure from
reading magnificent code than those who have come before
them. Whereas, generally speaking, most readers of code
today judge code based on the familiar criteria ofprecision,
concision, efficiency, andcorrectness, these future readers
will speak of thebeautyof code and theartistry of a well-
wrought script. We will, perhaps, print out the programs of
our favorite coders and read them in the bathtub. Further-
more, we will do so for no other reason than that we will
enjoydoing so; we will as eagerly await the next Miguel de
Icaza as we would the novels of our favorite author or the
films of our favorite director. Even now, the first rays of this
new art are shooting across the horizon; tomorrow, we will
shield our eyes against its brilliance.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

What we need today are coders who are
at once brilliant coders, expert judges,

and artists of sufficient taste to
convincingly explain to the rest of us how

to know great code when we see it
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Richard P. Gabriel and Ron Goldman’s fabulous es-
say Mob Software: The Erotic Life of Code (http:

//www.dreamsongs.com/MobSoftware.html )
makes many of the points that I will attempt to explicate
here. One of their theses is that “When software became

Free Software Magazine Issue 6, July 2005 1

http://www.dreamsongs.com/MobSoftware.html
http://www.dreamsongs.com/MobSoftware.html


FOCUS

Cover of Spinellis’ bookCode Reading.

merchandise, the opportunity vanished of teaching software
development as a craft and as artistry”. For Gabriel and
Goldman, faceless corporations have reduced coding to a
lowly craft; code is just another disposable product that is
only useful for furthering some corporate agenda. Such
base motives have prevented coding from flourishing as
a literature. Gabriel and Goldman describe the pitfalls
of proprietary software development and ask a rather
compelling question:

It’s as if all writers had their own private com-
panies and only people in the Melville company
could readMoby-Dickand only those in Heming-
way’s could readThe Sun Also Rises.Can you
imagine developing a rich literature under these
circumstances?

Newer models of software development aim to change this
unpleasant and unproductive situation. As more and more
skilled programmers and clever hackers license their code
under the GPL or dedicate it to the public domain, a litera-

Picture of Alexander Pope—Public Domain.

ture of code will slowly but surely emerge into public con-
sciousness. Still, my point here is that it will take more than
a huge body of available source code for coding to become
an art. We will need bold and enlightened critics—we will
need our Aristotle, our Horace, and our Alexander Pope.
These “literary critics of code” will show us how to read
great code and how to recognize and appreciate thebeauti-
ful as well as the useful.

Alexander Pope wrote hisEssay on Criticismin 1711, when
he was only 23 years old. Pope’s essay, written in stunning
verses, was one of the earliest works of literary criticism. It
was a work designed to teach us how to judge other works of
poetry. It is also contains some of the finest and most mem-
orable lines in the history of the English language. Even
if you have never heard of Alexander Pope, I bet you’ve
heard the line “To err is human, to forgive, divine.” Today,
we can read Pope’s essay with coding in mind and consider
how writing verses of poetry compares to lines of code—to
observe, along with Gabriel and Goldman, that “The con-
nection to poetry is remarkable.” Pope’s purpose is to give
advice not only to writers of poetry but also to critics of
that poetry—all the whiledemonstratinghis own mastery of
both. And who else but a free software programmer could
Popepossiblybe describing in these lines:

The learned reflect on what before they knew

Careless of censure, nor too fond of fame,

Still pleased to praise, yet not afraid to blame,

Averse alike to flatter, or offend,

Not free from faults, nor yet too vain to mend.

Those who are willing to release their work for public
scrutiny are as likely to receive praise and blame. The wor-
thiest among them will profit from both. What we need

2 Free Software Magazine Issue 6, July 2005



FOCUS

Donald E. Knuth. Picture courtesy of Wikipedia.

today are coders who are at once brilliant coders, expert
judges, and artists of sufficient taste to convincingly explain
to the rest of us how to know great code when we see it.
These literary critics will use their code to teach us how it
can be beautiful—and inspire even the most humble BASIC
programmer to feel something of that glorious and divine
spirit that makes artists of men.

What makes Pope’s essay so significant? Besides its his-
torical, creative, and stylistic value, we find in Pope’s essay
tremendous literary value. He is at once a masterpoetas
well as a mastercritic of poetry. This point is perhaps a
bit elusive, so I will make it clearer. Pope could have sim-
ply written his essay in prose, or, if he were alive and well
in 2005, perhaps a bulleted list. He chose instead to write
in the same genre he was philosophizing about. Alexander
Pope did for poetry what must be done for programming:
We need a coder who understands how toread andadmire
code as well as how to write it.

It is perhaps time to elect a new Pope. To my mind, there is
only one man of sufficient merit and tenacity to warrant such
an honor: Donald E. Knuth. I nominate Knuth because of
the development of what he termsliterate programming,an
approach to coding that involves incorporating a program’s
documentation into its source code—in much the same way
that Pope wrote about poetry in a poem, Knuth wants us
to write about coding in our code. Author of the classic
Art of Computer Programmingbooks, Knuth firmly believes
that programming can reach literary proportions. As early
as 1974, Knuth was arguing that computer programming
is more artistic than most people realize. “When I speak
about computer programming as an art,” writes Knuth, “I
am thinking primarily of it as an artform, in an aesthetic
sense. The chief goal of my work is to help people learn
how to write beautiful programs” (670). Knuth’s passion
and zeal for artistic coding is revealed in such lines as “it
is possible to writegrand programs,nobleprograms, truly
magnificentones!” (670). For Knuth, this means that pro-

grammers must think of far more than how effectively their
code will compile.

The fine art of coding

In a 1983 article entitled “Literate Programming,” Knuth ar-
gues that “the time is ripe for significantly better documen-
tation of programs, and that we can best achieve this by con-
sidering programs to be works of literature” (1). Knuth’s
project at that time wasliterate programming, which is a
combination of a document formatting language and a pro-
gramming language. The idea was to greatly extend what
can be done with embedded comments; in short, to make
source code as readable as documentation that might ac-
company it. The goal was not to necessarily make code that
would run more efficiently on a computer; the point was to
make code more interesting and enlightening to human be-
ings. The result of Knuth’s efforts was WEB, a combination
of PASCAL and TEX, and the newer CWEB, which offers
C, C++, or JAVA instead of PASCAL. WEB and CWEB al-
low programmers like Knuth to write “essays” on coding
that resemble Pope’s essay on poetry.

One of Knuth’s projects was to take the Will Crowther mas-
terpieceADVENTUREand rewrite it with CWEB. The re-
sults are marvellous. It is a joy to read this code. The best
way I can describe the pleasure I derive from reading it is
to compare it to listening to really good director’s commen-
tary on a special-edition DVD. It’s like having a wizened
and witty old friend reading along with me as I study the
code. How many source code files have you read with com-
ments like this:

Now here I am, 21 years later, returning to the
great Adventure after having indeed had many ex-
citing adventures in Computer Science. I believe
people who have played this game will be able to
extend their fun by reading its once-secret pro-
gram. Of course I urge everybody to play the
game first, at least ten times, before reading on.
But you cannot fully appreciate the astonishing
brilliance of its design until you have seen all of
the surprises that have been built in.

Knuth has something here. Knuth’s CWEB “commentary”
of Adventureisn’t the heavily abbreviated, arcane gibber-
ish that passes for comments in most source code, nor is

Free Software Magazine Issue 6, July 2005 3



FOCUS

it slavishly didactic and only concerned with teaching. It
is in many ways comparable to Pope’s essay; we have a
coder representingin codewhat is magnificent about code
and how one ought to judge it. It is something we will likely
to be studying fifty years from now with the same reverence
with which we approach “The Essay on Criticism” today.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

It seems inevitable that as free and open
source software community continues to
grow, the need for “literate” programming

techniques will increase exponentially
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Jef Raskin, author ofThe Humane Interface,recently pre-
sented us with an essay entitled “Comments are More Im-
portant Than Code.” He refers to Knuth’s work as “gospel
for all serious programmers.” Though Raskin is mostly con-
cerned with theeconomicrelevance of good commenting
practice, I welcome his criticism of modern programming
languages “that do not allow full flowing and arbitrarily long
comments is seriously behind the times.” It seems inevitable
that as free and open source software community continues
to grow, the need for “literate” programming techniques will
increase exponentially. After all, programmers that no one
understands (much less admires) are unlikely to win much
influence, despite their cleverness.

Coding: art or science?

Of the many intriguing topics that Knuth has contemplated
over the years is whether programming should be consid-
ered an art or a science. Always something of a linguist,
Knuth examines the etymology of both terms in a 1974 es-
say called “Computer Programming as an Art.” His results
indicate that real confusion exists about how to interpret the
terms “art” and “science,” even though weseemto know
what we mean when we claim that computer programming
is a “science” and not an “art.” We call the study of com-
puters “computer science,” Knuth writes, because “there is
something undesirable about an area of human activity that
is classified as an ‘art’; it has to be a Science before it has
any real stature” (667). Yet Knuth argues that “when we
prepare a program, it can be like composing poetry or mu-
sic” (670). The key to this transformation is to embrace “art
for art’s sake,” that is, to freely and unashamedly write code

for fun. Coding doesn’t always have to be for the sake of
utility. Artful coding can be done for its own sake, with-
out any thought about how it might eventually serve some
useful purpose.

Daniel Kohanski, author of a wonderful little book entitled
The Philosophical Programmer, has much to say about what
he calls the “aesthetics of programming.” Now, when most
folks talk aboutaesthetics, they are speaking about what
makes the beautiful so beautiful. If I see a young lady and
tell you that I find her aesthetically pleasing, I’m not talking
about how much she can bench-press or how accurately she
can shoot. Yet this seems to be what Kohanski means when
he talks of aesthetical programming:

While aesthetics might be dismissed as merely ex-
pressing a concern for appearances, its encour-
agement of elegance does have practical advan-
tages. Even so prosaic an activity as digging a
ditch is improved by attention to aesthetics; a
ditch dug in a straight line is both more appeal-
ing and more useful than one that zigzags at ran-
dom, although both will deliver the water from
one place to the other. (11)

I feel a sad irony that Kohanski chooses the metaphor of a
ditch to describe what he considers aesthetic code. Coders
have been stuck in this rut for quite some time. We take
something as wonderful and amazing as programming, and
compare it to perhaps the lowliest manual labor on earth: the
digging of ditches. If conciseness, durability, and efficiency
are all that matters, programmers work without art and grace
and might as well wield shovels instead of keyboards.

Let me set a few things straight here. When most people try
to establish “Science and Art” as binary oppositions, they
would generally do better to use the terms “Engineers and
Artists.” Computer programmingcanbe thought of from a
strictly engineering perspective—that is, an application of
the principles of science towards the service of humanity.
Civil engineering, for instance, involves building safe and
secure bridges. According to theOxford English Dictio-
nary, the wordengineerwas first used as a term for those
who constructed siege engines—war machinery. The word
still carries a very practical connotation; we expect engi-
neers to be precise, clever, and so on, but expect a far dif-
ferent set of qualities from those we termartists. Whereas

4 Free Software Magazine Issue 6, July 2005



FOCUS

the stereotypical engineer is an introvert with a pocket pro-
tector and calculator wristwatch, the stereotypical artist is
someone like Salvador Dali—a wild, eccentric type who is
poorly understood, yet wildly revered. We expect our artists
to be unpredictable and delightfully social beings—who re-
ally understand the human condition. We expect engineers
to be pretty dull folks to have around at parties.

Such oppositions are seldom useful and more often mislead-
ing. We might think of the man insisting that program-
ming is a “science” as equally intelligent as his compan-
ion, Tweedledum, who insists that it is quite obviously an
art. The truth, according to Knuth, is that programming is
“both a science and an art, and that the two aspects nicely
complement each other” (669). Like civil engineering, pro-
gramming involves the application of mathematics. Like
poetry, programming involves the application of aesthet-
ics. As with bridges, some programs are mundane things
that clearly serve only to get folks across bodies of wa-
ter, whereas others, like the Golden Gate Bridge, are mag-
nificent structures rightly regarded as national landmarks.
Unfortunately, the modern discourse surrounding computer
programming is far too slanted towards the banal; even leg-
ends of the field cannot bring themselves to see their calling
as anything but a useful but dull craft. They are the painters
who have convinced themselves that because they cannot
sell their frescoes, that painting houses is the only sensible
thing one can do with a paintbrush.

The future of programming as art

Computer programming is not limited to engineering, nor
must coders always think first of efficiency. Programming
is also an art, and, what’s more, it’s an art that shouldn’t
be limited to what is “optimal”. Even though programs
are usually written to be parsed and executed by computers,
they are also read by other human beings, some of whom,
I dare say, exercise respectable taste and appreciate good
style. We’ve misled ourselves into thinking that computer
programming is some “exact science,” more akin to applied
physics than fine art, yet my argument here is that what’s
really important in the construction of programs isn’t al-
ways how efficiently they run on a computer—or even if
they work at all. What’s important is whether they are beau-
tiful and inspiring to behold; if they are sublime and share
some of the same features that make masterful plays, com-

positions, sculptures, paintings, or buildings so magnificent.
A programmer who defines a good program simply as “one
that best does the job with the least use of a computer’s re-
sources” may get the job done, but he certainly is a dull,
uninspiring fellow. I wish to celebrate programmers who
are willing to dispense with this slavish devotion to effi-
ciency and see programming as an art in its own right; hav-
ing not so much to do with computers as other human beings
who have the knowledge and temperament to appreciate its
majesty.

It is all too easy to transpose historical developments in lit-
erature and literary criticism onto computer programming.
Undoubtedly, such a practice is at best simplistic—at worst
it is myopic. Comparisons to poetry, as Gabriel and Gold-
man point out, are all too tempting. Like poetry, coding is
at once imaginative and restricted:

Release is reined in by restraint: requirements of
form, grammar, sentence-making, echoes, rhyme,
rhythm. Without release there could be nothing
worth reading; the erotic pleasure of pure mean-
dering would be unapproached. Without restraint
there cannot be sense enough to make the journey
worth taking.

It is quite possible to look at the source code of a C++ pro-
gram and imagine it to be a poem; some experiment with
“free verse” making clever use of programming conven-
tions. Such comparisons, while certainly intriguing, are
not what I’m interested in pursuing. Likewise, I am not
arguing that artistic coding is simply inserting well-written
comments. I would not be interested in someone’s effort to
integrate a Shakespearean sonnet into the header file of an
e-mail client.

Instead, I’ve tried to assert that coding itself can be artis-
tic; that eloquent commenting cancomplement, but not sub-
stitute for, eloquent coding. To do so would be to claim
that it is more important for artists to know how to describe
their paintings than to paint them. Clearly, the future of pro-
gramming as art will involve both types of skills; but, more
importantly, the most artistic among us will be those who
have defected from the rank and file of engineers and re-
fused to kneel before the altar of efficiency. For these future
Byrons and Shelleys, the scripts unfolding beneath their fin-
gers are not some disposable materials for the commercial

Free Software Magazine Issue 6, July 2005 5



FOCUS

benefit of some ignorant corporate juggernaut. Instead, they
will be sacred works; digital manifestations of the spirit of
these artists. We should treat them with the same care and
respect we offer hallowed works in other genres, such as
Rodin’sThinker,Virgil’s Aeneid,Dante’sInferno,or Pope’s
Essay on Criticism.Like these other masterpieces, the best
programs will stand the test of time and remain impervious
to the raging rivers of technological and social change that
crash against them.

This question ofpermanenceis perhaps where we find our-
selves stumbling in our apology for programming. How
can we talk of a program as a “masterpiece”, knowing that,
given the rate of technological development that it may soon
become so obsolete as not to function in our computers? Yet
here is the reason that I have stressed how insignificant it is
that a programactually worksfor it to be rightly consid-
ered magnificent. Indeed, I find it almost certain that we
will find ourselves with programs whose utter brilliance we
will not be capable of recognizing for decades, if not cen-
turies. We can imagine, for instance, a videogame written
for systems more sophisticated than any in production to-
day. Likewise, any programmer with any maturity whatso-
ever can appreciate the inventiveness of the early pioneers,
who wrought miracles far more impressive in scope than
the humble achievements so brazenly trumpeted in the me-
dia today. To really appreciate the fine art of computer pro-
gramming, we must separatewhat works well in a given
computerfrom what represents artistic genius,and never
conflate the two—for the one is a fleeting, forgettable thing,
but the other will never die.

Copyright information

c© 2005 Matt Barton

This article is made available under the ”Attribu-
tion” Creative Commons License 2.0 available from
http://creativecommons.org/licenses/by/2.0/.

About the author

Matt Barton is an English professor at St. Cloud State
University in Minnesota. He is an advocate of free soft-
ware, wikis, and the Creative Commons. He also stud-
ies and writes about videogames.

6 Free Software Magazine Issue 6, July 2005


