
§12. Excerpts from class, October 23 [notes by PMR]

One of the chief aspects of WEB is to encourage better programming, not just better expo-
sition of programs. For example, many people say that about 25% of any piece of software
should be devoted to error handling and user guidance. But this will typically mean that
a subroutine might have 15 lines of ‘what to do if the data is faulty’ followed by one or
two lines of ‘what to do in the normal course of events’. The subroutine then looks very
much like an error-handling routine. This fails to motivate the writer to do a good job;
his heart just isn’t in the error handling. WEB provides a solution to this. The procedure
can have a single line near the beginning that says 〈Check if the data is wrong 28 〉 and
points to another module. Thus the proper focus is maintained: In the main module we
have code devoted to handling the normal cases, and elsewhere we have all the error-case
instructions. The programmer never feels that he’s writing a whole lot of stuff where he’d
really much rather be writing something else; in module 28, it feels right to do the best
error detection and recovery. Don showed us an example of this from his undergraduate
class in which a routine had two references of the form

if . . . then . . . else char error
pointing to a very brief error-reporting module.
We looked at a program written by another student who had the temerity to include

some comments critical of WEB. Don struck back with the following:
It is good practice to use italics for the names of variables when they appear in
comments.
Let the variables in the module title correspond to the local parameters in the
module itself.
According to this student’s comments, his algorithm uses ‘tail recursion’. This is
an impressive phrase, helpful in the proper context; but unfortunately that is not
the kind of recursion his program uses.

However, Don did grant that his exposition was good, and said that it gave a nice
intuition about the functions of the modules.

We saw a second program by the same student. It had the usual sprinkling of “wicked
whiches”—‘which’s that should have been ‘that’s. The purpose of the program was to
“enforce” the triangle inequality on a table of data that specified the distances between
pairs of large cities in the US. Don commented here that his project (from which these
programs came) intends to publish interesting data sets so that researchers in different
places can replicate each other’s results. He also observed that a program running on a
table of “real data,” as here (the actual “official” distances between the cities in question)
is a lot more interesting than the same program running on “random data.” Returning to
the nitty-gritty of the program, Don observed that the student had made a good choice of
variable names—for instance ‘villains’ for those parts of the data that were causing incon-
sistencies. This fitted in nicely with the later exposition; he could talk about ‘cut throats’
and so forth. (Don added that we nearly always find villainy pretty unamusing in real life,
but the word makes for a witty exposition in artificial life; the English language has lots
of vocabulary just waiting for such applications.)

[§12. LITERATE PROGRAMMING (2) 1 ]



Don wondered aloud why it is that people talk about “the nth and mth positions” (as
this student had) thereby reversing the natural (or at any rate alphabetical) order?

He also pointed to an issue that arises with the move from typewriters to computer
typesetting—the fact that we now distinguish between opening and closing quotes. We
saw an example where the student had written ”main program”. To add to the confusion,
different languages have different conventions for quotes; in German they appear like this:

”The Name of the Rose“. How to represent this in a standard ASCII file remains a mystery.
Back to the triangle inequality. Don pointed out that one obvious check for bad data

in the distance table follows from the fact that the road distance can not be less than
a Great Circle route. (“It could, if you had a tunnel” commented a New Yorker in the
audience.) The student had written a nice group of modules based on this fact, and it
illustrated the WEB facility of being able to put displayed equations into comments.

“So WEB effectively just does macro substitution?” asked another member of the class.
Exactly, said Don. In fact the macros he uses are not very general—they really allow only
one parameter. This means he doesn’t need a complex parser, but in fact one can do a
great deal within this restriction. For instance, it is not difficult to simulate two-parameter
macros if we wish.

Someone in the class commented that it seemed a little strange to put variable dec-
larations in a different module from their use. Don said that this was OK as long as they
are close to their use, but large procedures should have their local variables “distributed”
as the exposition proceeds.

Don recalled that older versions of Algol allowed you to declare a variable in the
middle of a block. This fits in nicely with the WEB philosophy, but unfortunately cannot be
done in modern Pascal. Indeed, Don became painfully aware of the limitations of Pascal
for system programming when he was writing WEB—you can’t have an array of file names,
for example. He got around them, though, with macros.

One example of improving Pascal via macros is to define (in WEB)
string type (#) ≡ packed array [1 . . #] of char

so that you can say things like
name code : string type (2)

when declaring a two-letter string variable.
At this point, prompted by a note from Tracy, Don announced that 23 copies of the

Handbook for Scholars had arrived in the Bookstore, with more to come. A resounding
cheer echoed throughout Terman.

Don commented that the student had given a certain variable the name ‘scan’. Since
this variable was essentially a place marker, Don thought that a noun would be much

[2 §12. LITERATE PROGRAMMING (2)]



better than a verb—‘place’, perhaps. Let the function determine the part of speech; think
of it as a kind of Truth in Naming. Verbs are for procedures, not data.

The last student had written a program to handle graph structures based on encoun-
ters between the characters in novels. He too had made the ”quote mistake”. The student
gave a nice characterization of the input and output of the program, using the typewriter
font to illustrate data as it appears in a file.

This student also showed a bit of inconsistency in the use of ‘it’ and ‘we’ as the
personification of his program. We seem to be finding the same old faults over and over
now, Don said, so perhaps that indicates that we have found them all. Discuss.

[§12. LITERATE PROGRAMMING (2) 3 ]


