
CHAPTER II

GROUPS

§2.1 Formalities on groups

(2.1.1) Let G be a set with a “law of composition”

G×G −→ G

sending (x, y) to xy which satisfies the following properties

(i) x(yz) = (xy)z for all x, y, z in G,

(ii) there is an element e ∈ G such that ex = x = xe for all x ∈ G.

We say then that G is a monoid. A monoid G is a group if the law of composition satisfies

(iii) for every x ∈ G, there is a y ∈ G such that xy = yx = e;

such a y must be uniquely determined and we denote it by x−1 called the inverse of x. A

group G is said to be commutative (or abelian) if

(iv) xy = yx for all x, y in G.

A subset H of a group G is said to be a subgroup of G if H is again a group. A nonempty

subset H of a group G is a subgroup if and only if x−1y ∈ H for all x, y in H.

(2.1.2) Let G and G′ be groups. A map f : G → G′ is a group homomorphism if for

any x, y ∈ G we have

f(xy) = f(x)f(y).

The kernel of a group homomorphism f is defined to be

Ker(f) = {x ∈ G | f(x) = e},
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§2.1 FORMALITIES ON GROUPS 9

which is a subgroup of G. A group homomorphism f is injective if and only if Ker(f) is

trivial. A bijective homomorphism of G into itself is called an automorphism. A set of all

automorphism of a group G, written Aut(G), is again a group under the composition of

automorphisms.

Let fi : Gi → Gi+1(i = 1, 2, . . . , n) be group homomorphisms so that we have a sequence,

G1
f1−→ G2

f2−→ G3
f3−→ · · · fn−→ Gn+1.

We will say that the above sequence is exact if Im(fi) = Ker(fi+1) for i = 1, 2, . . . , n. An

exact sequence of the type

(*) (e) −→ G1
f1−→ G2

f2−→ G3 −→ (e)

is called a short exact sequence.†

(2.1.3) Let G be a group and H be a subgroup of G. A left coset of H in G is a subset

of the type

aH = {ah | h ∈ H}.

A subset of the type Ha is called a right coset. The set of all left (resp. right) cosets is

denoted by G/H (resp. G\H). Any two left cosets are either identical or disjoint and the

union of all left cosets is the whole group G.

Let G be a finite group. The number of left cosets of H in G is denoted by [G : H] and

is called the index of H in G. The index of the trivial group is called the order of G (i.e.,

the number of elements of G). We will denote the order of G by o(G). If g ∈ G then the

order o(g) of g is defined to be the order of the cyclic subgroup generated by g. If K ⊂ H

are subgroups of G then one proves the formula

[G : H][H : K] = [G : K].

Even if G is an infinite group, this formula is valid if the indices appearing in the formula

are finite. In particular, if H is a subgroup of G then o(H)|o(G).

†Some authors say this is an extension of G1 by G3 and the others say this is an extension of G3 by
G1. We will try not to use these terminologies.
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(2.1.4) (Group action) Let G be group and X be a set. We say that G acts on X

(on the left) if there is a map

G×X −→ X

sending (g, x) to gx satisfying the properties

(i) (g1g2)x = g1(g2x),

(ii) ex = x.

For example, if H is a subgroup of G, then G acts on G/H via g(xH) = gxH for g ∈ G

and xH ∈ G/H. Similarly G also acts on G\H. The symmetric group on n letters Sn acts

on the set {1, 2, . . . , n} in an obvious way.

Let G act on a set X. Then we define an equivalence relation ∼ on X by x ∼ y if and

only if y = gx for some g ∈ G. For x ∈ X, the orbit of x is the equivalence class;

Gx = {gx | g ∈ G}.

We have X = ∪Gx, where the union is disjoint if we take one representative from each

equivalence class.

The isotropy group (or stabilizer) of x ∈ X is defined by

Ix = {g ∈ G | gx = x}.

Now the map G → Gx sending g to gx induces a bijection

G/Ix −→ Gx.

Hence if X is finite then we have,

(1) [G : Ix] = |Gx| and |X| =
∑

[G : Ix]

where | · | denotes the cardinality and the sum runs over all inequivalent x’s.

We let a group G acts on itself via conjugation, namely send (g, x) to gxg−1. Let

Z(G) = {g ∈ G | gx = xg for all x ∈ G}
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be the center of the group G. Then x ∈ Z(G) if and only if the isotropy group Ix of x is

G, i.e., [G : Ix] = 1.

Suppose G is a finite group. Collecting all those terms whose isotropy group is G in the

first sum and the others in the second, we have the class formula,

(2) o(G) = o(Z(G)) +
∑

[G : Ix]

where the second sum runs over all representatives of inequivalent classes whose isotropy

groups are distinct from G. As an illustration of the class formula, we see that if the

order of a group is a power of a prime then its center is nontrivial. In fact, if the center

is trivial then o(Z(G)) = 1. Reading the equation (2) modulo p we have 0 ≡ 1 which is a

contradiction.

We say that a group action is transitive if for any x and x′ in X there is g ∈ G such

that x′ = gx.

(2.1.5) A subgroup N of a group G is normal if gN = Ng for all g ∈ G. (We often

denote a normal subgroup by N C G.) In this case, the set of all left cosets, G/N of N

becomes a group under the law of composition

(gN)(g′N) = gg′N.

The group G/N is called the quotient group of G by N . We have the canonical map

f : G −→ G/N

given by f(x) = xN which is surjective of course. We sometimes denote xN by x̄. We have

an exact sequence

(e) −→ N −→ G −→ G/N −→ (e).

Let S be a subset of G. Define the normalizer of S in G by

N(S) = {g ∈ G | gS = Sg}.
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Hence if we let G act on the subsets of G via conjugation then N(S) is the isotropy group

of S. If H is a subgroup of G then N(H) is the largest subgroup of G in which H is

normal.

(2.1.6) (Semidirect product) Let H be a subgroup of a group G, and N be a normal

subgroup. Then the set

NH = {nh | n ∈ N, h ∈ H}

becomes a subgroup of G. And we have HN = NH. We say that G is a semidirect product

of N and H if N is normal in G, H is a subgroup, N ∩H = (e) and NH = G.

If G is a semidirect product of N and H then we can define a homomorphism

φ : H −→ Aut(N)

by φ(h)(n) = hnh−1, which we sometimes denote by nh. We define a law of composition

on the set N ×H by

(n, h)(m, k) = (nmh, hk) = (nφ(h)m,hk).

Then N ×H becomes a group with the identity (e, e) and the inverse of (n, h) is given by

(φ(h−1)n−1, h−1). We denote the resulting group by N ×φ H. If G is a semidirect product

of N and H then we have a map

N ×φ H −→ G

sending (n, h) to nh. Then one easily proves that this map is an isomorphism.

More generally, suppose N and H be any two groups, and φ : H → Aut(N) be a group

homomorphism. We can form the semidirect product N ×φ H as before. Then we can

identify N and H as subgroups of N ×φ H in an obvious way. Further N is normal,

NH = N ×φ H and N ∩H = (e).

In any case, we have a short exact sequence

(e) −→ N
i−→ N ×φ H

π−→ H −→ (e).
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An extension arising as a semidirect product is called a split extension – π has a right

inverse which is a group homomorphism. Note the map (n, h) 7→ n which is a left inverse

of i is not a group homomorphism in general.

(2.1.7) (Direct product of groups) Let {Gi}i∈I be a family of groups. Let G =
∏
i∈I

Gi

be the (set theoretic) product of Gi’s. The elements of G consists of all sequences (xi)i∈I .

with xi ∈ Gi. We define the group structure on G by componentwise multiplication namely

if (xi)i∈I and (yi)i∈I are two elements of G then their product is defined to be (xiyi)i∈I .

We have the projection

πi : G −→ Gi

sending (xi)i∈I to xi. Then the group G together with the family of homomorphisms {πi}
is the product of the groups {Gi}i∈I in the sense of (1.2.3). In fact, if fi : G′ → Gi is

a family of group homomorphisms, then the map defined by f(x′)i = fi(x′) satisfies the

required property.

We denote the product of the two groups G1 and G2 by G1 ×G2. Note that in (2.1.6),

if φ is trivial then the semidirect product becomes the product.

Let ⊕
i∈I

Gi be the subgroup of
∏
i∈I

Gi consisting of all (xi)i∈I such that xi = e except only

finitely many i’s. The group ⊕
i∈I

Gi is called the direct sum of the family {Gi}.
If the index set I is finite, say I = {1, 2, . . . , n} then the product G1 × · · · × Gn is the

same as G1 ⊕ · · · ⊕Gn and we will not distinguish these two groups.

(2.1.8)(Coproduct) We will sketch the construction of the coproduct of a family {Gi}
of groups. Assume that the groups Gi are arranged so that any two of the groups intersect

only in the identity {e}. (Show that this is always possible set theoretically.) Let X be

the union ∪
i∈I

Gi. Consider the sequence of the elements of X,

a1a2 · · · an, ai ∈ X

such that
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(i) no ai is the identity,

(ii) ai and ai+1 are not in the same group.

On the set of all such sequences together with the identity element e, we define a law of

composition;

(a1 · · · an)(b1 · · · bm) =





a1 · · · an−1(anb1)b2 · · · bm (if an and b1 are in the same group
then multiply them)

a1 · · · anb1b2 · · · bm (otherwise) .

Under this law of composition it becomes a group with the identity e. We denote the

resulting group by
∐
i∈I

Gi. Now there are natural monomorphisms

jk : Gk →
∐

i∈I

Gi.

Then the group
∐
i∈I

Gi together with the monomorphisms jk form a coproduct (or free

product) of the family {Gi}i∈I . In fact, if G is a group and fk : Gk → G are group

homomorphisms then there is an obvious homomorphism

f :
∐

i∈I

Gi −→ G

making the diagram

Gk
jk−−−−→ ∐

i∈I

Gi

fk ↘ ↙ f

G

commutative. Clearly such f is uniquely determined.

In the category of abelian groups the coproduct of a family {Ai} becomes the direct

sum ⊕Ai (Ex.7).
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(2.1.9) (Free group) Let X be a nonempty set. Consider the set of the following type

of symbols, called the words

(i) 1,

(ii) xi1
1 xi2

2 · · ·xin
n where xi ∈ X and ik is either +1 or -1, and x and x−1 are not adjacent.

To multiply these symbols, we juxtapose two such words and reduce it by canceling the

expression xx−1. The symbol 1 plays the role of the identity. In this way we get a group

denoted by F (X), and is called the free group on X. The group F (X) is the free object on

the set X in the category of groups. To see this let G be a group and f : X → G be a map

(of sets). Now there is a unique group homomorphism f ′ : F (X) → G so that i ◦ f ′ = f

where i : X → F (X) is the inclusion.

(2.1.10) (Group presentation) Let G be a group and X be a subset of G. Let 〈X〉
be the subgroup of G generated by X i.e., 〈X〉 is the smallest subgroup of G containing

X. Let F (X) be the free group on X where X is a generating set of G. Then we have a

surjective group homomorphism φ : F (X) → G. The kernel N of φ is a normal subgroup

of F (X) and we have F (X)/N ∼= G. Hence every group is a quotient of a free group.

Now suppose G is finitely generated i.e., there is a finite subset X = {x1, . . . , xn} such

that 〈X〉 = G. If G is finitely generated and if N = Ker(φ) is also finitely generated, say

N = 〈r1, . . . , rm〉 then we say that G is finitely presented. We may say then that G is

generated by x1, . . . , xn with the relations r1, . . . , rm or the group G has the presentation;

G = 〈x1, . . . , xn | r1, . . . , rm〉.

For example, the cyclic group Z/nZ of order n has a presentation

〈x | xn = e〉,

and the dihedral group Dn of degree n has the presentation

Dn = 〈x, y | xn = e, y2 = e, yx = x−1y〉.
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with its order 2n. The quaternion group Q (of order 8) has a presentation (Cf. Ex.15)

Q = 〈x, y | x4 = e, y2 = x2, yxy−1 = x−1〉.

(2.1.11) (Amalgamated sum) Let λi : H → Gi(i = 1, 2) be group homomorphisms.

The amalgamated sum of G1 and G2 over H which is denoted by G1

∐
H

G2, is the quotient

(G1

∐
G2)/N where N is the normal subgroup of G1

∐
G2 generated by

{λ1(h)λ2(h−1) | h ∈ H}.

Let αi be the composition of the maps

αi : Gi → G1

∐
G2 → G1

∐

H

G2.

Then

is a push-out diagram i.e., for any fi : Gi → K (i = 1, 2) such that f1 ◦ λ1 = f2 ◦ λ2 there

is a unique group homomorphism f : G1

∐
H

G2 → K such that f ◦ αi = fi(i = 1, 2). Note

that if H is trivial then G1

∐
H

G2 = G1

∐
G2.

(2.1.12) (Direct limit) Let I be a set of indices with a partial ordering ≤. Suppose

{Ai}i∈I is a family of abelian groups and suppose, whenever i ≤ j, there are homomor-

phisms of abelian groups

f i
j : Ai −→ Aj
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with compatibility conditions

f j
k ◦ f i

j = f i
k (i ≤ j ≤ k) and f i

i = id.

We call such a family {Ai, f
i
j} an inductive (direct ) system. Let M be the subgroup of

⊕
i∈I

Ai which is generated by

{ai − f i
j(ai) | ai ∈ Ai, i ≤ j}.

The abelian group (⊕Ai)/M is called the direct ( inductive ) limit of {Ai}i∈I and is denoted

by lim−→
i∈I

Ai. The natural maps

fi : Ai −→ lim−→
i∈I

Ai

obtained by composing the maps Ai → ⊕Ai → ⊕Ai/M satisfy

fj ◦ f i
j = fi.

The direct limit has the following universal property: Let B be an abelian group and

gi : Ai → B be homomorphisms such that

gj ◦ f i
j = gi whenever i ≤ j.

Then there exists a unique map g : lim−→
i∈I

Ai → B such that g ◦ fi = gi.

Further this universal property characterizes the direct limit lim−→Ai.

Note that for ai ∈ Ai, and aj ∈ Aj we have fi(ai) = fj(aj) if and only if there is k ∈ I

such that k ≥ i, k ≥ j and f i
k(ai) = f j

k(aj) in Ak.
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Let {Bi, g
i
j} be another inductive system. Suppose {φi : Ai → Bi} be a morphism of

inductive systems i.e., gi
j ◦ φi = φj ◦ f i

j . Then the family {φi} induces a group homomor-

phism

lim−→
i∈I

φi : lim−→
i∈I

Ai −→ lim−→
i∈I

Bi.

For example, if {Ai}(i = 1, 2, . . . .) are increasing sequence of subgroups of an abelian

group A then lim−→Ai = ∪Ai. And if I has the largest member m then we have lim−→Ai = Am.

For another example, let U be the set of all open sets of C containing 0 and define a

partial ordering on U by U ≤ V if and only if V ⊆ U. For U ∈ U let OU be the set of all

analytic functions on U. Then an element of O = lim−→
U∈U

OU is represented by f ∈ OU for

some U ∈ U and, any two f ∈ OU and g ∈ OV are identified if and only if there is W ∈ U
such that W ⊆ U ∩ V and f |W = g|W . The ring O becomes a “discrete valuation ring”

which we call the germs of analytic functions at 0. (See (3.4.8).)

(2.1.13) (Inverse limit) Inverse limit is dual to the notion of direct limit. Let I be

a set of indices with a partial ordering ≤. Suppose {Ai}i∈I is a family of abelian groups

and suppose, whenever i ≤ j, there are homomorphisms of abelian groups

f j
i : Aj −→ Ai

with compatibility conditions

f i
k ◦ f j

i = f j
k (i ≤ j ≤ k) and f i

i = id.

Such a family {Ai, f
j
i } is called an inverse (projective) system. The inverse (projective)

limit of the family {Ai}i∈I is defined to be

lim←−
i∈I

Ai = {(xi)i∈I ∈
∏
i∈I

Ai | f j
i (xj) = xi for all i ≤ j}.

The maps

fj : lim←−Ai −→ Aj
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induced by the k-th projection satisfy,

f j
i ◦ fj = fi whenever i ≤ j.

As in the direct case the inverse limit can be characterized by the following universal

property: Let B be an abelian group and gi : B → Ai be homomorphisms such that

f j
i ◦ gj = gi whenever i ≤ j.

Then there exists a unique map g : B −→ lim←−
i∈I

Ai such that fi ◦ g = gi.

Let {Bi, g
i
j} be another inverse system. Suppose {φi : Ai → Bi} be a morphism of

inverse systems i.e., gj
i ◦φj = φi◦f j

i . Then the family {φi} induces a group homomorphism

lim←−
i∈I

φi : lim←−
i∈I

Ai −→ lim←−
i∈I

Bi.

Consider a rather special case. Let R be a commutative ring and I be an ideal. We

have the natural maps

R/I
φ1←− R/I2 φ2←− R/I3 φ3←− · · ·

Then

lim←−
n

R/In = {(x1, x2, . . . ) ∈
∏

n≥1 R/In | xn−1 = φn(xn) for all n > 1}.

We sometimes call lim←−
n

R/In the completion of R with respect to the ideal I.
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When R = Z, I = (p) where p is a prime, then lim←−Z/pnZ is denoted by Ẑp and is called

the ring of p-adic integers.† It turns out that Ẑp is a “complete local” ring with a unique

nonzero prime (principal) ideal generated by φ(p).

If {Ai} is a family of subgroups of an abelian group then lim←−Ai = ∩Ai. For more about

limits see Appendix.

Exercises 2.1

1. Let H and K be two subgroups of G.

(i) If H, K are finite then we have

|HK| = o(H)o(K)/o(H ∩K).

(ii) The subset HK is a subgroup if and only if HK = KH.

(iii) The subset of the form HgK is called a double coset. Show that G is a disjoint union

of double cosets. The set of all double cosets is denoted by H\G/K .

2. Let G be a finite group and H be a proper subgroup. Then ∪
g∈G

gHg−1 6= G. (Hint :

The number of elements of ∪gHg−1 < o(G).)

3. Prove the following statements.

(i) In (2.1.2)(*) show that G3
∼= G2/Im(f1).

(ii) If H, N are subgroups of G and N is normal then we have an exact sequence

(e) −→ H ∩N −→ H −→ NH/N −→ (e)

so that we have an isomorphism H/N ∩H ∼= NH/N .

(iii) If N1 ⊆ N2 are normal subgroups of G then

(e) −→ N2/N1 −→ G/N1 −→ G/N2 −→ (e)

is an exact sequence so that we have an isomorphism G/N2
∼= (G/N1)/(N2/N1).

†Usual notation for the ring of p-adic integers is Zp but we reserve it for a localization (3.2.4).
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4. Show that D4 and S3 are semidirect products of their proper subgroups.

5. The group of invertible upper triangular matrix (under multiplication) of size n is a

semidirect product of the group of diagonal matrices and the group of upper triangular

matrices with 1’s on the diagonal.

6. A group G is a direct product of N and H if and only if an extension

(e) −→ N
ι−→ G

π−→ H → (e)

has a retraction r : G → N (i.e., r is a group homomorphism such that r ◦ ι = idN ).

7. In the category of abelian groups show that the coproduct of a family {Ai} becomes

the direct sum ⊕Ai.

8. Prove the following statements.

(i) There is a surjection G1

∐
G2 → G1 ×G2.

(ii) G1

∐
G2

∼= G2

∐
G1 .

(iii) If N is a normal subgroup of G1

∐
G2 generated by G1 then (G1

∐
G2)/N ∼= G2 .

(iv) If fi : Gi → Hi (i = 1, 2) are group homomorphisms then there is a group homomor-

phism

f1

∐
f2 : G1

∐
G2 −→ H1

∐
H2.

(v) Prove Z/2
∐
Z/3 = 〈a, b | a2 = b3 = e〉. Also show that this group is isomorphic to

SL(2,Z)/(±I). (Hint: Let S =
[

0 −1
1 0

]
, T =

[
1 1
0 1

]
and send a to S and b to

ST .)

9. Let G = G1

∐
H

G2.

(i) Show G is finitely generated if G1 and G2 are finitely generated.

(ii) If G1, G2 are finitely generated then G is finitely presented if and only if H is finitely

presented.

10. Prove:

(i) Show that a finite group is finitely presented.

(ii) Construct a subgroup of the free group on two generators which is not finitely gen-

erated.

11. Let G be free a group on a set X.
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(i) If G is also free on a set Y then X and Y has the same cardinality. The common

cardinality is called the rank.

(ii) The free group on one generator is isomorphic to the infinite cyclic group Z.

(iii) If G is a free group is of rank ≥ 2 then G has a free subgroup of any finite rank.

12. Prove that a group G is free if and only if for every short exact sequence

(e) −→ H −→ E −→ G −→ (e)

there is a section s : G → E.

13. Prove:

(i) The group 〈x, y |x2 = y3 = (xy)2 = e〉 is isomorphic to S3.

(ii) The group 〈x, y |x3 = y2 = (xy)3 = e〉 is isomorphic to A4.

14. The quaternion group Q (2.1.12) is isomorphic to the group {±1,±i,±j,±k} with the

relations i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. What is the center of Q ? Every

subgroup of Q is normal. The quaternion group Q is not isomorphic to D4.

15. Let Gm,n,r,s be the group defined by the presentation

Gm,n,r,s = 〈x, y |xm = e, yn = xr, yxy−1 = xs〉

where m,n are nonnegative integers and r, s are arbitrary integers such that m, r(s− 1)

and sn − 1 are not all zero. Let d = gcd{m, |r(s − 1)|, |sn − 1|}. Then the order of

Gm,n,r,s is dn. Also show that the subgroup N generated by x is normal and find o(N).

16. With the notations of (1.2.5), show that the pullback is given by

A×C B = {(a, b) | f(a) = g(a)}

in the category of groups. In the category of abelian groups the push out is given by

X = A×B/{(f(a),−g(a)) | a ∈ A}.

17. Prove:

(i) There is a natural injection φ : Z→ Ẑp.

(ii) (x0, x1, . . . ) ∈ Ẑp is a unit if and only if x0 6= 0.
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(iii) Ẑp is a local ring with a unique nonzero prime (principal) ideal generated by φ(p).

18. Prove that lim←−
n

R[X]/(Xn) ∼= R[[X]].

19. If {Ai} is a family of subgroups of an abelian group then lim←−Ai = ∩Ai.

20. Let Q̂p be the quotient field of Ẑp. Prove that lim−→Z/pnZ ∼= Q̂p/Ẑp.

21. Prove lim←−{Z/nZ : all positive integer n} ∼= ∏
all prime p

Ẑp

2.2 Structure of groups

(2.2.1) (Free abelian groups) An abelian group G is said to be free (resp. finitely

generated free if G is isomorphic to a direct sum (resp. finite direct sum) of copies of Z. We

will deal with the finitely generated case for clarity even though sometimes the arguments

goes through for the infinite case also.

Let G be the additive group Zn ( the n-copies of Z ). Suppose G is also isomorphic to

Zm for some m, say φ : Zn → Zm is an isomorphism. Reduce the isomorphism φ modulo

a prime p to get the isomorphism φ̄ : (Z/pZ)n → (Z/pZ)m of vector spaces over the finite

field Z/p. From the linear algebra we see that n = m. The uniquely determined integer n

is called the rank of the free abelian group G.

The group Zn is generated by ei = (0, . . . , 1, . . . , 0) (i = 1, 2, . . . , n) where 1 is in the

i-th place and 0 elsewhere. These are linearly independent over Z i.e., if
∑

niei = 0 with

ni ∈ Z then we have ni = 0 for all i. A linearly independent set of an abelian group

which generates G is called a basis of G. Hence we showed that Zn has a basis {e1, . . . , en}.
Conversely if X = {x1, . . . , xn} is a basis of an abelian group G then G is isomorphic to

Zn, an isomorphism being given by sending xi to ei. Hence an abelian group is free if and

only if it has a basis. Since the cardinality of a basis is uniquely determined, a free abelian

group is uniquely determined by its rank up to an isomorphism.

A free abelian group G is a free object on its basis X = {x1, . . . , xn} in the sense of

(1.2.4). In fact, let H be an abelian group and f : X → H be a map (of sets) such that

f(xi) = hi.
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X = {x1, . . . , xn} → G

f ↘ ↙ f̄

H

Then we define f̄ : G → H by f̄(xi) = hi and extend it by using Z -linearity.

(2.2.2) Let G be an (additive) abelian group with the identity element 0. An element

g ∈ G is said to be torsion if there is an integer n such that ng = 0. We say that G is a

torsion group if every element of G is torsion; G is torsion free if every non-zero element

of G is not a torsion. Define

Gτ = {g ∈ G | g is torsion}.

Then Gτ is a torsion group, and G/Gτ is torsion free. We have an exact sequence

(0) −→ Gτ −→ G −→ G/Gτ −→ (0)

where Gτ is a torsion group and G/Gτ is torsion free.

(2.2.3) Let G,G1 and G2 be abelian groups. Then the following conditions are equiv-

alent.

(i) G ∼= G1 ⊕G2.

(ii) We have an exact sequence

(*) (0) −→ G1
ι−→ G

π−→ G2 −→ (0)

and there is a group homomorphism s : G2 → G (called a section) such that π ◦ s = id,

i.e., the above exact sequence splits.

(iii) We have an exact sequence (*) of (ii) and a group homomorphism r : G → G1

(called a retraction) such that r ◦ ι = id.

(iv) There are endomorphisms φi : G → G (i = 1, 2) such that

Im(φi) = Gi, φ1 + φ2 = idG and φi ◦ φj = δijφj
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where δij is the Kronecker delta.

Furthermore, if G2 is a free abelian group in (*) of (ii) then the exact sequence splits.

(See Ex. 1 for further equivalent conditions.)

Proof. (i) ⇒ (ii) By identifying G with G1 ⊕G2 we choose ι to be the inclusion of G1

into G and π be the projection to the second factor. Now define s(x) = (0, x).

(ii) ⇒ (iii) Let x ∈ G. Then x− s ◦ π(x) is in the kernel of π which is the same as the

image of ι. Since ι is injective, there is a unique y ∈ G1 such that ι(y) = x− s ◦π(x). Now

define r(x) = y. Now one checks that r ◦ ι = id.

(iii) ⇒ (i) Define a map G → G1 ⊕ G2 by sending an element x of G to (r(x), π(x)).

For the inverse of this map let (a, b) ∈ G1⊕G2 and let b′ ∈ G be such that π(b′) = b. Now

map (a, b) to ι(a) + b′ − ι ◦ r(b′). One checks that these maps are inverses to each other.

(i) ⇒ (iv) Let φi be the composition G
proj.−→ Gi

incl.−→ G. Now it is easy to check (iv).

(iv)⇒ (i) Exercise.

For the last part, let {zi} be a free basis of G2 and xi be a lift of zi in G. Then there

must be a torsion free element in the coset xi +G1 in G, say x̄i (otherwise π(xi) = zi must

be a torsion). Hence we can define the map s by requiring s(zi) = x̄i.

We remark here that if the groups are non-abelian then the results above are false. For

example, consider a semidirect product N ×φ H. We have an exact sequence

(e) −→ N
ι−→ N ×φ H

π−→ H −→ (e).

There is a section s : H → N ×φ H defined by s(h) = (0, h). However, N ×φ H is not

isomorphic to the direct sum N ⊕H unless φ is trivial. Cf. Ex.2.1.6.

(2.2.4) A subgroup H of a free abelian group G of rank n is free of rank ≤ n. A finitely

generated torsion free abelian group is free.

Proof. We induct on n. The result for n = 1 is well known. (A subgroup of Z is of the

form nZ for some integer n and it is isomorphic to Z.) Let G =
n⊕

i=1
Zxi (n > 1). Consider
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the projection f : G → Zx1 sending
∑

nixi to n1x1 . Let H1 be the kernel of f |H . Then

H1 is a subgroup of Zx2 ⊕ · · · ⊕ Zxn. By induction on rank, H1 is free of rank ≤ n − 1.

Now f(H) is either 0 or infinite cyclic. We have an exact sequence,

(0) −→ H1 −→ H −→ f(H) −→ (0),

with f(H) free of rank 1 or 0. Hence H ∼= H1⊕f(H) (2.2.3). Hence H is free of rank ≤ n.

For the second statement, let S = {x1, . . . , xn} be a maximal Z -linear independent

subset of G. Let H be the subgroup of G generated by S. Then H is free (exercise). If

y ∈ G, then {y, x1, . . . , xn} is linearly dependent. Hence there are integers m’s not all zero

such that

my + m1x1 + · · ·+ mnxn = 0.

Hence my lies in H. Since this is true for a finite set of generators of G, there is a nonzero

integer k such that kG ⊆ H. Since the map sending x to kx is a monomorphism, we see

that G is isomorphic to kG = {kg | g ∈ G}. The group kG, being a subgroup of H, is free.

Since the multiplication-by-k map is an isomorphism between G and kG we conclude that

G is free.

(2.2.5) Throughout this subsection G is a finite abelian group. Let G be a finite abelian

group of order n, and let n = rs where r and s are relatively prime. Then there are integers

a and b such that ra + sb = 1. Therefore, G = raG + sbG ⊆ rG + sG ⊆ G. Hence we

have equalities everywhere. On the other hand, if g ∈ rG ∩ sG then sg = rg = 0. Hence

g = rag + sbg = 0. And therefore G = rG⊕ sG.

For a nonnegative integer k let

Gk = {g ∈ G | kg = 0}.

Then since rsG = nG = 0, we have sG ⊆ Gr . Conversely, if g ∈ Gr then g = rag + sbg =

sbg. Therefore sG = Gr. Similarly we have rG = Gs. Hence G = Gr ⊕Gs, by Ex.1

Summing up we have proved that if G is an abelian group of order n = rs where r and

s are relatively prime, then

(1) G = Gr ⊕Gs.
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Hence if G is an abelian group of order pr1
1 · · · prt

t then

(1′) G = Gp
r1
1
⊕ · · · ⊕Gp

rt
t

.

In particular, Z/mn ∼= Z/n⊕ Z/m for relatively prime integers m and n.

Let p be a prime and define

G(p) = {g ∈ G | png = 0 for some n}

which we call the p-primary part of G. If G is finite then G(p) is of prime power order i.e.,

a p-group. Now it is easy to show that G(pi) = Gp
ri
i

. Therefore if G is an abelian group

of order n = pr1
1 · · · prt

t then G is isomorphic to the direct sum of its primary parts

(2) G ∼= G(p1)⊕ · · · ⊕G(pt)

with each G(pi) a pi-group.

(2.2.6) A finite abelian p-group G is isomorphic to a product of cyclic p-groups i.e., G

is isomorphic to

Z/pr1 ⊕ · · · ⊕ Z/prn ,

where r1 ≥ r2 ≥ · · · ≥ rn, and the sequence of integers (r1, . . . , rn) is uniquely determined.

Proof. Let x1 ∈ G be an element of maximal order, say pr1 . Let G1 be the cyclic

subgroup of G generated by x1. Then, by induction, we see that

(*) G/G1
∼= Ḡ2 ⊕ · · · ⊕ Ḡn

where Ḡi are cyclic of order pri generated by x̄i and r2 ≥ · · · ≥ rn. Now there is an

element xi ∈ G which represents x̄i and is of order pri . To see this we may assume n = 2

by induction. Let x′2 be a lift of x̄2 in G. Then pr2x′2 ∈ G1 and pr1x′2 = 0 by maximality of

(p-power) pr1 . Since G1 is cyclic of order pr1 with r1 ≥ r2, we see pr2x′2 ∈ Ker(G1
pr1−r2−→ G1)

= Im(G1
pr2−→ G1). Hence there is z ∈ G1 such that pr2x′2 = pr2z. Then x2 = x′2 − z will

represent x̄2 with precise order pr2 .
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Let Gi be the cyclic subgroup of G generated by xi. Now we will show that G ∼=
G1 ⊕ · · · ⊕ Gn by using Ex.1. In fact, if x ∈ G then x̄ = m2x̄2 + · · · + mnx̄n for some

integers m2, . . . , mn. Hence x −m2x2 − · · · −mnxn is in G1. Therefore we can find m1

such that x = m1x1 + · · · + mnxn ; G is generated by x1, . . . , xn. Now we need to show

that (G1 + · · ·+ Gi) ∩Gi+1 = (0). Let x ∈ (G1 + · · ·+ Gi) ∩Gi+1. Then we can write

x = m1x1 + · · ·+ mixi = −mi+1xi+1

with mj < prj (j = 1, 2, . . . , i + 1). Taking bar, we see that m2 = · · · = mi+1 = 0 by (*).

This in turn implies that m1 = 0 also. Hence all mj ’s are zero.

We leave the proof of uniqueness of (r1, . . . , rn) as an exercise.

(2.2.7) Let G be a finite abelian group. Then by (2.2.6) above, we have

(1) G ∼= G(p1)⊕ · · · ⊕G(pn), where G(pi) ∼= Z/p
ei1
i ⊕ · · · ⊕ Z/p

eis

i ,

where p’s are primes and e’s are positive integers such that ei1 ≥ · · · ≥ eis
.

Now using the fact that Z/mn ∼= Z/n⊕ Z/m for relatively prime integers m and n, we

see that (by collecting the terms of different primes) G is isomorphic to a direct sum of

the cyclic group of the type Z/pe1
1 · · · pen

n . For example,

Z/23 × Z/22 × Z/2× Z/35 × Z/3× Z/5 ∼= Z/22355× Z/223× Z/2.

Here the first factor on the right hand side is the product of the terms of the highest prime

power from each prime and the second factor is the product of the factors of the next

highest prime power orders etc.

Hence we conclude that if G is a finite abelian group then there is a unique sequence of

integers (m1, . . . , mr) such that

(2) G ∼= Z/m1 ⊕ · · · ⊕ Z/mr

with mr | mr−1 | · · · | m1. The sequence (m1, . . . , mr) is called the invariants of the finite

abelian group G.
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As an exercise find all isomorphism classes of abelian group of order 233352.

(2.2.8) (Jordan-Hölder Theorem) Let G be a group. A (finite) sequence of sub-

groups

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn = (e)

is called a composition series if Gi+1 is normal in Gi and Gi/Gi+1 is simple (i.e., it has

no nontrivial normal subgroup). A group may or may not have a composition series; for

example Z has no composition series for any nonzero subgroup of Z contains an infinite

descending chain of subgroups.

Let

G = H1 ⊇ H2 · · · ⊇ Hm = (e)

be another composition series of G. We say that they are equivalent if m = n and

Gi/Gi+1
∼= Hσ(i)/Hσ(i)+1 for some permutation σ of {1, 2, . . . , n}. Jordan-Hö1der the-

orem asserts that if a group G has a composition series then any two of the composition

series are equivalent. For a proof we refer to any algebra text. As an exercise find two

composition series of the group Z/3253 and show that they are equivalent.

(2.2.9) Let G be a finite group.

(i) If p is a prime number dividing the order of G then G has a subgroup of order p.

(ii) (Sylow Theorem) Let pn be the highest power of p dividing the order of G. Then

there is a subgroup of order pn in G which we call a p-Sylow subgroup.

Proof. (i) Recall the class formula (2.1.4)(2)

o(G) = o(Z(G)) +
∑

[G, Ix].

If p|o(Z(G)) then we can find a subgroup of Z(G) of order p by the classification of finite

abelian groups (2.2.7). Now suppose p - o(Z(G)). Since p|o(G) we must have p - [G : Ix]

for some x by the class formula (2.1.4). Hence p|o(Ix) and o(Ix) < o(G). By induction Ix

has a subgroup of order p which completes the proof.
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(ii) If o(G) = p, then there is nothing to prove. If there is a subgroup H whose index is

prime to p, then pn|o(H). Hence, by induction, H (hence G) has a subgroup of order pn.

Therefore we may assume that every subgroup has an index divisible by p. From the

class formula we have p|o(Z(G)) since p|[G, Ix]. Let a be an element of Z(G) whose order

is p (2.2.7), and let H be the subgroup generated by a. Then H is normal in G, since H

is contained in the center. Let f : G → G/H be the canonical map. Then pn−1|o(G/H).

By induction there is a subgroup K of G/H of order pn−1. Now the subgroup f−1(K) of

G has order pn.

(2.2.10) (Sylow Theorems) Let G be a finite group.

(i) If H is a p-group then H is contained in a p-Sylow subgroup.

(ii) All p-Sylow subgroups are conjugate.

(iii) The number of p-Sylow subgroups is congruent to 1 modulo p and divides the order

of G.

Proof. (i) Let S be the set of all p-Sylow subgroups of G and P ∈ S. We let G act on

S via conjugation (note that a conjugation of a p-Sylow subgroup is again a p-Sylow)

G× S −→ S.

(g, Q) 7→ gQg−1

Then the isotropy group IP contains P . Let S0 be the orbit of P . Then by the maximality

(of p-power) of P the cardinality of S0 is prime to p (since |S0| = [G : IP ] and P ⊆ IP ).

We let H act on S0 via conjugation;

H × S0 → S0.

Since S0 is a disjoint union of H-orbits, and since the index of a proper subgroup of H

is divisible by p, at least one of H-orbit contains exactly one element, say P ′. Hence

H ⊆ N(P ′).
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Now we contend that H ⊆ P ′. In fact, since P ′ is normal in N(P ′),HP ′ is a subgroup

(of N(P ′)) and P ′ is normal in HP ′. We have an isomorphism (Ex.(2.1.3)),

HP ′/P ′
∼=−→ H/H ∩ P ′.

Hence the order of HP ′ is a power of p. Now the maximality of P ′ implies that P ′ = HP ′.

Therefore H ⊆ P ′.

(ii) In the proof of (i), we let H be one of p-Sylow subgroups. Then H ⊆ P ′ which

belongs to the orbit S0 of P . Since both are maximal p-subgroups, we have H = P ′. Hence

they are conjugate.

(iii) In the proof of (i), we let H = P . Then exactly one H-orbit of S0 contains single

element, namely P. In fact, obviously the orbit of P ∈ S0 is {P}. On the other hand, if

Q ∈ S0 has a single orbit then as in the proof of (i) above we see P ⊆ Q. Thus P = Q by

the maximality of p-power order.

Hence we conclude that the number of conjugates of P is congruent to 1 modulo p.

Finally, since the number of conjugates is |S0| = [G : IP ], it divides the order of G.

(2.2.11) (Groups of order pq) Let G be a group of order pq where p, q are primes

with p > q.

(i) If q - (p− 1) then G is isomorphic to Z/pq.

(ii) If q|(p− 1) then G is isomorphic to either Z/pq or

〈a, b | ap = e, bq = e, ba = asb〉

where s 6≡ 1(mod p) and sq ≡ 1(mod p).

Proof. Let A,B be subgroups of order p and q respectively. Then A and B are iso-

morphic to Z/p and Z/q. Further, A is normal subgroup of G (Ex.18). One checks that

A∩B = (e) and AB = G. Hence G is a semidirect product A×φB for some φ : B → Aut(A)

(2.1.6). The group Aut(A) is isomorphic to the group of units (Z/p)∗ of (Z/p) which is

cyclic of order (p− 1).
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(i) If q - (p− 1) then there is no nontrivial group homomorphism φ since B is cyclic of

prime order φ must be injective unless φ is trivial. Hence we have

G ∼= A⊕B ∼= Z/p⊕ Z/q ∼= Z/pq.

(ii) Now suppose q|(p−1). If φ is a trivial homomorphism then G is isomorphic to Z/pq

as in (i) above.

If φ is nontrivial then φ is determined by φ(1) = s in (Z/p)∗. Since φ is nontrivial and

since φ(q) must be the identity we have

s 6≡ 1(mod p) and sq ≡ 1(mod p).

Now G is generated by a = (1, 0) and b = (0, 1) and their orders are p and q respectively

i.e., ap = e and bq = e. Denoting the group operation in A×φ B by ◦, we compute,

b ◦ a = (0, 1) ◦ (1, 0) = (0 + 1φ(1), 1) = (s, 0) ◦ (0, 1) = as ◦ b.

(2.2.12) Let G be a group, and H1 and H2 be two subgroups of G. We define [H1,H2]

be the subgroup of G generated by the elements of the form

h1h2h
−1
1 h−1

2 where h1 ∈ H1 and h2 ∈ H2.

We define the subgroups Di(G) and Ci(G) as follows;

D1(G) = C1(G) = [G,G] ;

Di(G) = [Di−1(G), Di−1(G)] and Ci(G) = [G,Ci−1(G)].

Both Di(G) and Ci(G) are normal subgroups of G (Ex.14). We have the descending chain

of subgroups,

D1(G) ⊇ D2(G) ⊇ D3(G) ⊇ · · · ,

C1(G) ⊇ C2(G) ⊇ C3(G) ⊇ · · · ,
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which are called the derived series and the lower central series respectively. Let H be a

subgroup of G and N B G and let π : G → G/N be the projection. Then we have

Di(H) ⊆ Di(G), Ci(H) ⊆ Ci(G) and

π(Di(G)) = Di(G/N), π(Ci(G)) = Ci(G/N).

Note that Ci(G)/Ci+1(G) is in the center of G/Ci+1(G) (Ex.19). A group G is said to

be solvable (resp. nilpotent) if Dk+1(G) (resp. Ck+1(G) ) is trivial for some integer k; the

smallest such k is called the solvability (resp. nilpotency) class of G. Since Di(G) ⊆ Ci(G)

we see that a nilpotent group is solvable. Trivially an abelian group is nilpotent. A

subgroup and a quotient of a solvable (resp. nilpotent) group are solvable (resp. nilpotent).

(2.2.13) The following conditions are equivalent.

(i) G is nilpotent with nilpotency class ≤ n.

(ii) There is a sequence of subgroups

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn+1 = (e)

such that [G,Gk] ⊆ Gk+1(1 ≤k≤ n). (Note Gk is necessarily normal in G.)

(iii) There is a subgroup A in Z(G) such that G/A is nilpotent with nilpotency class

≤ (n− 1).

Proof. (i) ⇒ (ii) Take Gk = Ck(G).

(ii) ⇒ (i) By induction one shows that Ck(G) ⊆ Gk+1.

(iii) ⇒ (i) Let f : G → G/A be the canonical homomorphism. Then f(Cn(G)) =

Cn(G/A) = (e) and hence Cn(G) ⊆ A. Therefore, Cn+1(G) = (e).

(i) ⇒ (iii) Take A = Cn(G). Cf. Ex.12.

(2.2.14) The following conditions are equivalent.

(i) G is solvable with solvability class ≤ n.
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(ii) There is a sequence of normal subgroups of G

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn+1 = (e),

such that Gk+1 is normal in Gk and Gk/Gk+1 is commutative.

(iii) There is a normal commutative subgroup A of G such that G/A is solvable.

Proof. (i) ⇒ (ii) Take Gk = Dk(G).

(ii) ⇒ (iii) Take A = Gn.

(iii) ⇒ (i) Exercise.

(2.2.15) Let G be a finite group. The following conditions are equivalent.

(i) G is nilpotent.

(ii) For any prime p, there is a (unique) normal p-Sylow subgroup of G.

(iii) G is a product of p-groups (for various p’s).

Proof. (i) ⇒ (ii) Let P be a p-Sylow subgroup. First we claim N(P ) = NN(P ). For

this let g ∈ NN(P ) and write N = N(P ); gNg−1 ⊆ N . Then gPg−1 and P are p-Sylow

subgroups of N . Hence there is h ∈ N such that gPg−1 = hPh−1. Thus h−1g ∈ N ;

g ∈ hN = N . Obviously N(P ) ⊆ NN(P ) by definition.

This in turn implies N(P )(= N) = G. In fact, assume the contrary i.e., N 6= G. Let Gk

be as in (2.2.13)(ii) and Nk = N ·Gk. Then we have a chain G = N1 ⊇ N2 ⊇ · · · ⊇ N. First

we claim Nk+1 is normal in Nk. For this let h ∈ N then hNk+1h−1 = hN · Gk+1h−1 =

hNh−1Gk+1 = N ·Gk+1 = Nk+1 since N and Gk+1 are normal in G. On the other hand if

s ∈ Gk and h ∈ N then shs−1 = shs−1h−1h ∈ [G,Gk]·N ⊆ Gk+1N = Nk+1. Hence N and

Gk normalize Nk+1; Nk+1 is normal in Nk as claimed. Finally since we assumed G 6= N

we can choose the largest integer k such that Nk ! N then we see that the normalizer of

N is strictly bigger than N which contradicts to our previous assertion.

(ii) ⇒ (iii) Let I be the set of primes dividing the order of G and for each p ∈ I let

Pp be the p-Sylow subgroup of G. Let φ be the canonical map
∏
p∈I

Pp → G which maps

(gp)p∈I to
∏
p∈I

gp. We claim that φ is an isomorphism. In fact, if g ∈ Pp and h ∈ Pq for
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distinct primes p, q then ghg−1h−1 ∈ Pp ∩ Pq = (e). Hence gh = hg. This implies that φ

is a group homomorphism. To see φ is onto first note that Im(φ) contains all Pp’s since

φ|Pp
is the inclusion. Hence the order of Im(φ) is divisible by the highest power of primes

which divides o(G). Hence G =Im(φ). Since the orders of the groups
∏
p∈I

Pp and G are the

same, φ is an isomorphism.

(iii) ⇒ (i) A p-group is nilpotent. In fact, we know that the center is nontrivial by the

class formula. By induction, G/Z(G) is nilpotent. Now G is nilpotent by (2.2.13)(iii). To

finish the proof use the fact that a product of nilpotent groups are nilpotent Ex.12 (ii).

(2.2.16) Early 1980’s, people succeeded in classifying all finite simple groups. For a

brief historical survey article of this matter see the article by Ron Solomon “On finite

simple groups and their classification”, AMS, Notice, Vol. 42, No. 2 (1995).

Exercises 2.2

1. Let G be an abelian group, G1, . . . , Gn be subgroups of G. Then the following conditions

are equivalent.

(i) G ∼= G1 ⊕ · · · ⊕Gn.

(ii) Every element of x ∈ G can be written uniquely as x = x1 + · · ·+ xn where xi is an

element of Gi (i = 1, . . . , n).

(iii) G1 + · · ·+ Gn = G and (G1 + · · ·+ Gi) ∩Gi+1 = (0) for each i.

2. Answer the following questions.

(i) List all nonisomorphic abelian groups of order 233352.

(ii) List all groups of order 8 (abelian or not). Show your list is complete.

3. Express (Z/n)∗, the group of units of Z/n as a direct product of cyclic groups of the

form (2.2.7) (2).

4. The group of rational numbers Q is not finitely generated; it is not free either.
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5. An abelian group is a free object in the category of abelian groups if and only if it is

isomorphic to a direct sum of copies (finite or not) of Z’s.

6. Let p be a prime number.

(i) A group of order p2 is abelian.

(ii) Construct a non abelian group of order p3 .

7. Show that a countable product of Z is not free. (Hint: Write A for the product of

countable copies of Z. If A is free then its rank must be ℵ1. Let p be a prime. If A were

free then A/pA is a Z/pZ-vector space whose dimension is ℵ1. For a nonzero integer k,

let vp(k) be the maximal power of p which divides k and let vp(0) = ∞. Let S be the

subgroup of A defined by

S = {(a1, a2, . . . ) ∈ A | vp(ai) →∞ as i →∞}

and let x = (p, p2, p3, . . . ) ∈ A. Then multiplication-by-x map is an isomorphism from

A to S. Hence if A were free of dimension ℵ1 then S/pS is a Z/pZ -vector space of

dimension ℵ1. But S/pS is generated, as a Z/pZ-vector space, by the family {ei}∞i=1

whose i-th coordinate is 1 and zero elsewhere.)

8. Every finite group has a composition series.

9. Let G be a finite group and p be a prime. If every subgroup of G has an index divisible

by p then G is a p-group.

10. Let G be a group order pnm where (m, p) = 1.

(i) There is a subgroup of G of order pi(1 ≤ i ≤ n).

(ii) A subgroup of order pi is normal in some subgroup of order pi+1.

11. Answer the following questions.

(i) Find all 2-Sylow subgroups of in S4. To which groups are they isomorphic?

(ii) Find 2-Sylow subgroups of S5. Show one of them is isomorphic to D4. What is the

center of D4 ?

12. Prove:

(i) If there is an exact sequence

(0) −→ A −→ G −→ H −→ (e)
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where A is abelian and H is nilpotent, then G is nilpotent.

(ii) A product of nilpotent groups is nilpotent.

13. Show that S3 is solvable but not nilpotent.

14. A subgroup H of G is called characteristic if σ(H) ⊆ H for all σ ∈ Aut(G). Show that

a characteristic subgroup is normal. Show that Di(G) and Ci(G) are characteristic

subgroups.

15. If G is a finite nilpotent group of order n and m|n then G has a subgroup of order m.

16. If N and H are normal nilpotent subgroup of G then HN is also normal nilpotent.

17. The dihedral group Dn is nilpotent if and only if n is a power of 2.

18. Let H be a subgroup of a finite group G. If [G : H] is the smallest prime p dividing

the order of G, then H is normal in G. (Hint: Let G act on G/H by left translation to

get a map f : G → Sp (= the permutation group on the left cosets of H). Show that

Ker(f) = H.)

19. Prove the following statements.

(i) The quotient G/[G,G] is abelian and if N is a normal subgroup of G such that G/N

is normal then [G,G] ⊆ N . That is G/[G,G] is the largest abelian quotient of G.

(ii) Let G be a group and H be a subgroup of G and N be a normal subgroup of G. Let

f : G → G/N be the canonical map. Then f(H) is contained in the center of G/N if

and only if [G,H] is contained in N .

20. The Frattini group Φ(G) of G is defined to be the intersection of all maximal subgroups.

If G is finite then Φ(G) is nilpotent.

21. Let F be a field.

(i) The group G consisting of all matrices of the form




1 a b
0 1 c
0 0 1


 , a, b, c ∈ F,

is a nilpotent group. Can you generalize this fact ?

(ii) Let G be the group of all the matrices of the form

[
a c
0 b

]
, a, b, c ∈ F, ab 6= 0,
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is a solvable group. Can you generalize this? Is this nilpotent?

22. For n ≥ 5, Sn is not solvable.

23. The dihedral group Dn is solvable.

24. Let S and T be solvable subgroups of G. If S is normal in G then ST is a solvable

subgroup of G.

25. Any group of order p2q where p, q are primes is solvable.

26. If G is nonabelian group of order p3 ( p is a prime) then Z(G) = [G : G].

27. Any group of order ≤ 60 is of prime order or has a nontrivial normal subgroup.

28. A finite group G is called supersolvable if there is a composition series

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn = (e)

consisting of normal subgroups of G such that Gi/Gi+1 is cyclic.

(i) Every subgroup, every quotient and a finite product of supersolvable group is super-

solvable.

(ii) Show: nilpotent ⇒ supersolvable ⇒ solvable.

(iii) The alternating group A4 is solvable but not supersolvable. Find an example which

is supersolvable but not nilpotent.

(iv) If G is supersolvable the [G,G] is nilpotent.

(v) If G has a cyclic subgroups A,B such that G = A ·B = B ·A then G is supersolvable.


