CHAPTER II

GROUPS

$\S 2.1$ Formalities on groups

(2.1.1) Let G be a set with a "law of composition"

$$
G \times G \longrightarrow G
$$

sending (x, y) to $x y$ which satisfies the following properties
(i) $x(y z)=(x y) z$ for all x, y, z in G,
(ii) there is an element $e \in G$ such that $e x=x=x e$ for all $x \in G$.

We say then that G is a monoid. A monoid G is a group if the law of composition satisfies
(iii) for every $x \in G$, there is a $y \in G$ such that $x y=y x=e$;
such a y must be uniquely determined and we denote it by x^{-1} called the inverse of x. A group G is said to be commutative (or abelian) if
(iv) $x y=y x$ for all x, y in G.

A subset H of a group G is said to be a subgroup of G if H is again a group. A nonempty subset H of a group G is a subgroup if and only if $x^{-1} y \in H$ for all x, y in H.
(2.1.2) Let G and G^{\prime} be groups. A map $f: G \rightarrow G^{\prime}$ is a group homomorphism if for any $x, y \in G$ we have

$$
f(x y)=f(x) f(y) .
$$

The kernel of a group homomorphism f is defined to be

$$
\operatorname{Ker}(f)=\{x \in G \mid f(x)=e\}
$$

which is a subgroup of G. A group homomorphism f is injective if and only if $\operatorname{Ker}(f)$ is trivial. A bijective homomorphism of G into itself is called an automorphism. A set of all automorphism of a group G, written $\operatorname{Aut}(G)$, is again a group under the composition of automorphisms.

Let $f_{i}: G_{i} \rightarrow G_{i+1}(i=1,2, \ldots, n)$ be group homomorphisms so that we have a sequence,

$$
G_{1} \xrightarrow{f_{1}} G_{2} \xrightarrow{f_{2}} G_{3} \xrightarrow{f_{3}} \cdots \xrightarrow{f_{n}} G_{n+1} .
$$

We will say that the above sequence is exact if $\operatorname{Im}\left(f_{i}\right)=\operatorname{Ker}\left(f_{i+1}\right)$ for $i=1,2, \ldots, n$. An exact sequence of the type

$$
\begin{equation*}
(e) \longrightarrow G_{1} \xrightarrow{f_{1}} G_{2} \xrightarrow{f_{2}} G_{3} \longrightarrow(e) \tag{*}
\end{equation*}
$$

is called a short exact sequence. ${ }^{\dagger}$
(2.1.3) Let G be a group and H be a subgroup of G. A left coset of H in G is a subset of the type

$$
a H=\{a h \mid h \in H\} .
$$

A subset of the type $H a$ is called a right coset. The set of all left (resp. right) cosets is denoted by G / H (resp. $G \backslash H$). Any two left cosets are either identical or disjoint and the union of all left cosets is the whole group G.

Let G be a finite group. The number of left cosets of H in G is denoted by $[G: H]$ and is called the index of H in G. The index of the trivial group is called the order of G (i.e., the number of elements of G). We will denote the order of G by $o(G)$. If $g \in G$ then the order $o(g)$ of g is defined to be the order of the cyclic subgroup generated by g. If $K \subset H$ are subgroups of G then one proves the formula

$$
[G: H][H: K]=[G: K] .
$$

Even if G is an infinite group, this formula is valid if the indices appearing in the formula are finite. In particular, if H is a subgroup of G then $o(H) \mid o(G)$.

[^0](2.1.4) (Group action) Let G be group and X be a set. We say that G acts on X (on the left) if there is a map
$$
G \times X \longrightarrow X
$$
sending (g, x) to $g x$ satisfying the properties
(i) $\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)$,
(ii) $e x=x$.

For example, if H is a subgroup of G, then G acts on G / H via $g(x H)=g x H$ for $g \in G$ and $x H \in G / H$. Similarly G also acts on $G \backslash H$. The symmetric group on n letters \mathfrak{S}_{n} acts on the set $\{1,2, \ldots, n\}$ in an obvious way.

Let G act on a set X. Then we define an equivalence relation \sim on X by $x \sim y$ if and only if $y=g x$ for some $g \in G$. For $x \in X$, the orbit of x is the equivalence class;

$$
G x=\{g x \mid g \in G\} .
$$

We have $X=\cup G x$, where the union is disjoint if we take one representative from each equivalence class.

The isotropy group (or stabilizer) of $x \in X$ is defined by

$$
I_{x}=\{g \in G \mid g x=x\} .
$$

Now the map $G \rightarrow G x$ sending g to $g x$ induces a bijection

$$
G / I_{x} \longrightarrow G x .
$$

Hence if X is finite then we have,

$$
\begin{equation*}
\left[G: I_{x}\right]=|G x| \text { and }|X|=\sum\left[G: I_{x}\right] \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the cardinality and the sum runs over all inequivalent x 's.
We let a group G acts on itself via conjugation, namely send (g, x) to $g x g^{-1}$. Let

$$
Z(G)=\{g \in G \mid g x=x g \text { for all } x \in G\}
$$

be the center of the group G. Then $x \in Z(G)$ if and only if the isotropy group I_{x} of x is G, i.e., $\left[G: I_{x}\right]=1$.

Suppose G is a finite group. Collecting all those terms whose isotropy group is G in the first sum and the others in the second, we have the class formula,

$$
\begin{equation*}
o(G)=o(Z(G))+\sum\left[G: I_{x}\right] \tag{2}
\end{equation*}
$$

where the second sum runs over all representatives of inequivalent classes whose isotropy groups are distinct from G. As an illustration of the class formula, we see that if the order of a group is a power of a prime then its center is nontrivial. In fact, if the center is trivial then $o(Z(G))=1$. Reading the equation (2) modulo p we have $0 \equiv 1$ which is a contradiction.

We say that a group action is transitive if for any x and x^{\prime} in X there is $g \in G$ such that $x^{\prime}=g x$.
(2.1.5) A subgroup N of a group G is normal if $g N=N g$ for all $g \in G$. (We often denote a normal subgroup by $N \triangleleft G$.) In this case, the set of all left cosets, G / N of N becomes a group under the law of composition

$$
(g N)\left(g^{\prime} N\right)=g g^{\prime} N .
$$

The group G / N is called the quotient group of G by N. We have the canonical map

$$
f: G \longrightarrow G / N
$$

given by $f(x)=x N$ which is surjective of course. We sometimes denote $x N$ by \bar{x}. We have an exact sequence

$$
(e) \longrightarrow N \longrightarrow G \longrightarrow G / N \longrightarrow(e) .
$$

Let S be a subset of G. Define the normalizer of S in G by

$$
N(S)=\{g \in G \mid g S=S g\} .
$$

Hence if we let G act on the subsets of G via conjugation then $N(S)$ is the isotropy group of S. If H is a subgroup of G then $N(H)$ is the largest subgroup of G in which H is normal.
(2.1.6) (Semidirect product) Let H be a subgroup of a group G, and N be a normal subgroup. Then the set

$$
N H=\{n h \mid n \in N, h \in H\}
$$

becomes a subgroup of G. And we have $H N=N H$. We say that G is a semidirect product of N and H if N is normal in G, H is a subgroup, $N \cap H=(e)$ and $N H=G$.

If G is a semidirect product of N and H then we can define a homomorphism

$$
\phi: H \longrightarrow \operatorname{Aut}(N)
$$

by $\phi(h)(n)=h n h^{-1}$, which we sometimes denote by n^{h}. We define a law of composition on the set $N \times H$ by

$$
(n, h)(m, k)=\left(n m^{h}, h k\right)=(n \phi(h) m, h k) .
$$

Then $N \times H$ becomes a group with the identity (e, e) and the inverse of (n, h) is given by $\left(\phi\left(h^{-1}\right) n^{-1}, h^{-1}\right)$. We denote the resulting group by $N \times_{\phi} H$. If G is a semidirect product of N and H then we have a map

$$
N \times_{\phi} H \longrightarrow G
$$

sending (n, h) to $n h$. Then one easily proves that this map is an isomorphism.
More generally, suppose N and H be any two groups, and $\phi: H \rightarrow \operatorname{Aut}(N)$ be a group homomorphism. We can form the semidirect product $N \times_{\phi} H$ as before. Then we can identify N and H as subgroups of $N \times_{\phi} H$ in an obvious way. Further N is normal, $N H=N \times{ }_{\phi} H$ and $N \cap H=(e)$.

In any case, we have a short exact sequence

$$
(e) \longrightarrow N \xrightarrow{i} N \times_{\phi} H \xrightarrow{\pi} H \longrightarrow(e) .
$$

An extension arising as a semidirect product is called a split extension $-\pi$ has a right inverse which is a group homomorphism. Note the map $(n, h) \mapsto n$ which is a left inverse of i is not a group homomorphism in general.
(2.1.7) (Direct product of groups) Let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups. Let $G=\prod_{i \in I} G_{i}$ be the (set theoretic) product of G_{i} 's. The elements of G consists of all sequences $\left(x_{i}\right)_{i \in I}$. with $x_{i} \in G_{i}$. We define the group structure on G by componentwise multiplication namely if $\left(x_{i}\right)_{i \in I}$ and $\left(y_{i}\right)_{i \in I}$ are two elements of G then their product is defined to be $\left(x_{i} y_{i}\right)_{i \in I}$. We have the projection

$$
\pi_{i}: G \longrightarrow G_{i}
$$

sending $\left(x_{i}\right)_{i \in I}$ to x_{i}. Then the group G together with the family of homomorphisms $\left\{\pi_{i}\right\}$ is the product of the groups $\left\{G_{i}\right\}_{i \in I}$ in the sense of (1.2.3). In fact, if $f_{i}: G^{\prime} \rightarrow G_{i}$ is a family of group homomorphisms, then the map defined by $f\left(x^{\prime}\right)_{i}=f_{i}\left(x^{\prime}\right)$ satisfies the required property.

We denote the product of the two groups G_{1} and G_{2} by $G_{1} \times G_{2}$. Note that in (2.1.6), if ϕ is trivial then the semidirect product becomes the product.

Let $\underset{i \in I}{ } G_{i}$ be the subgroup of $\prod_{i \in I} G_{i}$ consisting of all $\left(x_{i}\right)_{i \in I}$ such that $x_{i}=e$ except only finitely many i 's. The group $\underset{i \in I}{\oplus} G_{i}$ is called the direct sum of the family $\left\{G_{i}\right\}$.

If the index set I is finite, say $I=\{1,2, \ldots, n\}$ then the product $G_{1} \times \cdots \times G_{n}$ is the same as $G_{1} \oplus \cdots \oplus G_{n}$ and we will not distinguish these two groups.
(2.1.8)(Coproduct) We will sketch the construction of the coproduct of a family $\left\{G_{i}\right\}$ of groups. Assume that the groups G_{i} are arranged so that any two of the groups intersect only in the identity $\{e\}$. (Show that this is always possible set theoretically.) Let X be the union $\underset{i \in I}{\cup} G_{i}$. Consider the sequence of the elements of X,

$$
a_{1} a_{2} \cdots a_{n}, \quad a_{i} \in X
$$

such that
(i) no a_{i} is the identity,
(ii) a_{i} and a_{i+1} are not in the same group.

On the set of all such sequences together with the identity element e, we define a law of composition;

$$
\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)=\left\{\begin{array}{cc}
a_{1} \cdots a_{n-1}\left(a_{n} b_{1}\right) b_{2} \cdots b_{m} & \text { (if } a_{n} \text { and } b_{1} \text { are in the same group } \\
\text { then multiply them) } \\
a_{1} \cdots a_{n} b_{1} b_{2} \cdots b_{m} \quad \text { (otherwise) } .
\end{array}\right.
$$

Under this law of composition it becomes a group with the identity e. We denote the resulting group by $\coprod_{i \in I} G_{i}$. Now there are natural monomorphisms

$$
j_{k}: G_{k} \rightarrow \coprod_{i \in I} G_{i} .
$$

Then the group $\coprod_{i \in I} G_{i}$ together with the monomorphisms j_{k} form a coproduct (or free product) of the family $\left\{G_{i}\right\}_{i \in I}$. In fact, if G is a group and $f_{k}: G_{k} \rightarrow G$ are group homomorphisms then there is an obvious homomorphism

$$
f: \coprod_{i \in I} G_{i} \longrightarrow G
$$

making the diagram

$$
\begin{gathered}
G_{k} \xrightarrow{j_{k}} \coprod_{i \in I} G_{i} \\
f_{k} \searrow \quad \swarrow f \\
G
\end{gathered}
$$

commutative. Clearly such f is uniquely determined.
In the category of abelian groups the coproduct of a family $\left\{A_{i}\right\}$ becomes the direct sum $\oplus A_{i}$ (Ex.7).
(2.1.9) (Free group) Let X be a nonempty set. Consider the set of the following type of symbols, called the words
(i) 1 ,
(ii) $x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ where $x_{i} \in X$ and i_{k} is either +1 or -1 , and x and x^{-1} are not adjacent. To multiply these symbols, we juxtapose two such words and reduce it by canceling the expression $x x^{-1}$. The symbol 1 plays the role of the identity. In this way we get a group denoted by $F(X)$, and is called the free group on X. The group $F(X)$ is the free object on the set X in the category of groups. To see this let G be a group and $f: X \rightarrow G$ be a map (of sets). Now there is a unique group homomorphism $f^{\prime}: F(X) \rightarrow G$ so that $i \circ f^{\prime}=f$ where $i: X \rightarrow F(X)$ is the inclusion.
(2.1.10) (Group presentation) Let G be a group and X be a subset of G. Let $\langle X\rangle$ be the subgroup of G generated by X i.e., $\langle X\rangle$ is the smallest subgroup of G containing X. Let $F(X)$ be the free group on X where X is a generating set of G. Then we have a surjective group homomorphism $\phi: F(X) \rightarrow G$. The kernel N of ϕ is a normal subgroup of $F(X)$ and we have $F(X) / N \cong G$. Hence every group is a quotient of a free group.

Now suppose G is finitely generated i.e., there is a finite subset $X=\left\{x_{1}, \ldots, x_{n}\right\}$ such that $\langle X\rangle=G$. If G is finitely generated and if $N=\operatorname{Ker}(\phi)$ is also finitely generated, say $N=\left\langle r_{1}, \ldots, r_{m}\right\rangle$ then we say that G is finitely presented. We may say then that G is generated by x_{1}, \ldots, x_{n} with the relations r_{1}, \ldots, r_{m} or the group G has the presentation;

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle .
$$

For example, the cyclic group $\mathbb{Z} / n \mathbb{Z}$ of order n has a presentation

$$
\left\langle x \mid x^{n}=e\right\rangle,
$$

and the dihedral group D_{n} of degree n has the presentation

$$
D_{n}=\left\langle x, y \mid x^{n}=e, y^{2}=e, y x=x^{-1} y\right\rangle .
$$

with its order $2 n$. The quaternion group Q (of order 8) has a presentation (Cf. Ex.15)

$$
Q=\left\langle x, y \mid x^{4}=e, y^{2}=x^{2}, y x y^{-1}=x^{-1}\right\rangle .
$$

(2.1.11) (Amalgamated sum) Let $\lambda_{i}: H \rightarrow G_{i}(i=1,2)$ be group homomorphisms. The amalgamated sum of G_{1} and G_{2} over H which is denoted by $G_{1} \coprod_{H} G_{2}$, is the quotient $\left(G_{1} \amalg G_{2}\right) / N$ where N is the normal subgroup of $G_{1} \coprod G_{2}$ generated by

$$
\left\{\lambda_{1}(h) \lambda_{2}\left(h^{-1}\right) \mid h \in H\right\} .
$$

Let α_{i} be the composition of the maps

$$
\alpha_{i}: G_{i} \rightarrow G_{1} \coprod G_{2} \rightarrow G_{1} \coprod_{H} G_{2} .
$$

Then
is a push-out diagram i.e., for any $f_{i}: G_{i} \rightarrow K(i=1,2)$ such that $f_{1} \circ \lambda_{1}=f_{2} \circ \lambda_{2}$ there is a unique group homomorphism $f: G_{1} \coprod_{H} G_{2} \rightarrow K$ such that $f \circ \alpha_{i}=f_{i}(i=1,2)$. Note that if H is trivial then $G_{1} \coprod_{H} G_{2}=G_{1} \amalg G_{2}$.
(2.1.12) (Direct limit) Let I be a set of indices with a partial ordering \leq. Suppose $\left\{A_{i}\right\}_{i \in I}$ is a family of abelian groups and suppose, whenever $i \leq j$, there are homomorphisms of abelian groups

$$
f_{j}^{i}: A_{i} \longrightarrow A_{j}
$$

with compatibility conditions

$$
f_{k}^{j} \circ f_{j}^{i}=f_{k}^{i}(i \leq j \leq k) \text { and } f_{i}^{i}=\mathrm{id} .
$$

We call such a family $\left\{A_{i}, f_{j}^{i}\right\}$ an inductive (direct) system. Let M be the subgroup of $\underset{i \in I}{\oplus} A_{i}$ which is generated by

$$
\left\{a_{i}-f_{j}^{i}\left(a_{i}\right) \mid a_{i} \in A_{i}, i \leq j\right\} .
$$

The abelian group $\left(\oplus A_{i}\right) / M$ is called the direct (inductive) limit of $\left\{A_{i}\right\}_{i \in I}$ and is denoted by $\underset{i \in I}{\lim } A_{i}$. The natural maps

$$
f_{i}: A_{i} \longrightarrow \underset{i \in I}{\lim } A_{i}
$$

obtained by composing the maps $A_{i} \rightarrow \oplus A_{i} \rightarrow \oplus A_{i} / M$ satisfy

$$
f_{j} \circ f_{j}^{i}=f_{i} .
$$

The direct limit has the following universal property: Let B be an abelian group and $g_{i}: A_{i} \rightarrow B$ be homomorphisms such that

$$
g_{j} \circ f_{j}^{i}=g_{i} \text { whenever } i \leq j
$$

Then there exists a unique map $g: \underset{i \in I}{\lim } A_{i} \rightarrow B$ such that $g \circ f_{i}=g_{i}$.

Further this universal property characterizes the direct $\operatorname{limit} \xrightarrow{\lim } A_{i}$.
Note that for $a_{i} \in A_{i}$, and $a_{j} \in A_{j}$ we have $f_{i}\left(a_{i}\right)=f_{j}\left(a_{j}\right)$ if and only if there is $k \in I$ such that $k \geq i, k \geq j$ and $f_{k}^{i}\left(a_{i}\right)=f_{k}^{j}\left(a_{j}\right)$ in A_{k}.

Let $\left\{B_{i}, g_{j}^{i}\right\}$ be another inductive system. Suppose $\left\{\phi_{i}: A_{i} \rightarrow B_{i}\right\}$ be a morphism of inductive systems i.e., $g_{j}^{i} \circ \phi_{i}=\phi_{j} \circ f_{j}^{i}$. Then the family $\left\{\phi_{i}\right\}$ induces a group homomorphism

$$
\underset{i \in I}{\lim } \phi_{i}: \underset{i \in I}{\lim } A_{i} \longrightarrow \underset{i \in I}{\lim } B_{i} .
$$

For example, if $\left\{A_{i}\right\}(i=1,2, \ldots)$ are increasing sequence of subgroups of an abelian group A then $\xrightarrow{\lim } A_{i}=\cup A_{i}$. And if I has the largest member m then we have $\underset{\longrightarrow}{\lim } A_{i}=A_{m}$.

For another example, let \mathcal{U} be the set of all open sets of \mathbb{C} containing 0 and define a partial ordering on \mathcal{U} by $U \leq V$ if and only if $V \subseteq U$. For $U \in \mathcal{U}$ let \mathcal{O}_{U} be the set of all analytic functions on U. Then an element of $\mathcal{O}=\underset{U \in \mathcal{U}}{\lim } \mathcal{O}_{U}$ is represented by $f \in \mathcal{O}_{U}$ for some $U \in \mathcal{U}$ and, any two $f \in \mathcal{O}_{U}$ and $g \in \mathcal{O}_{V}$ are identified if and only if there is $W \in \mathcal{U}$ such that $W \subseteq U \cap V$ and $\left.f\right|_{W}=\left.g\right|_{W}$. The ring \mathcal{O} becomes a "discrete valuation ring" which we call the germs of analytic functions at 0. (See (3.4.8).)
(2.1.13) (Inverse limit) Inverse limit is dual to the notion of direct limit. Let I be a set of indices with a partial ordering \leq. Suppose $\left\{A_{i}\right\}_{i \in I}$ is a family of abelian groups and suppose, whenever $i \leq j$, there are homomorphisms of abelian groups

$$
f_{i}^{j}: A_{j} \longrightarrow A_{i}
$$

with compatibility conditions

$$
f_{k}^{i} \circ f_{i}^{j}=f_{k}^{j}(i \leq j \leq k) \quad \text { and } \quad f_{i}^{i}=\mathrm{id}
$$

Such a family $\left\{A_{i}, f_{i}^{j}\right\}$ is called an inverse (projective) system. The inverse (projective) limit of the family $\left\{A_{i}\right\}_{i \in I}$ is defined to be

$$
{\underset{i \in I}{\lim }}_{\overleftarrow{i 匕 I}} A_{i}=\left\{\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} A_{i} \mid f_{i}^{j}\left(x_{j}\right)=x_{i} \text { for all } i \leq j\right\}
$$

The maps

$$
f_{j}: \lim _{\leftrightarrows} A_{i} \longrightarrow A_{j}
$$

induced by the k-th projection satisfy,

$$
f_{i}^{j} \circ f_{j}=f_{i} \text { whenever } i \leq j .
$$

As in the direct case the inverse limit can be characterized by the following universal property: Let B be an abelian group and $g_{i}: B \rightarrow A_{i}$ be homomorphisms such that

$$
f_{i}^{j} \circ g_{j}=g_{i} \text { whenever } i \leq j
$$

Then there exists a unique map $g: B \longrightarrow \underset{i \in I}{\lim _{i \in I}} A_{i}$ such that $f_{i} \circ g=g_{i}$.

Let $\left\{B_{i}, g_{j}^{i}\right\}$ be another inverse system. Suppose $\left\{\phi_{i}: A_{i} \rightarrow B_{i}\right\}$ be a morphism of inverse systems i.e., $g_{i}^{j} \circ \phi_{j}=\phi_{i} \circ f_{i}^{j}$. Then the family $\left\{\phi_{i}\right\}$ induces a group homomorphism

$$
\lim _{i \in I} \phi_{i}:{\underset{i \in I}{ }}_{\lim _{i \in I}} A_{i} \longrightarrow \lim _{i \in I} B_{i}
$$

Consider a rather special case. Let R be a commutative ring and I be an ideal. We have the natural maps

$$
R / I \stackrel{\phi_{1}}{\leftrightarrows} R / I^{2} \stackrel{\phi_{2}}{\leftrightarrows} R / I^{3} \stackrel{\phi_{3}}{\leftrightarrows} \cdots
$$

Then

$$
{\underset{n}{\lim }}_{{\underset{n}{2}}^{n}} / I^{n}=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \prod_{n \geq 1} R / I^{n} \mid x_{n-1}=\phi_{n}\left(x_{n}\right) \text { for all } n>1\right\} .
$$

We sometimes call ${\underset{n}{n}}_{\lim _{n}} R / I^{n}$ the completion of R with respect to the ideal I.

When $R=\mathbb{Z}, I=(p)$ where p is a prime, then $\lim \mathbb{Z} / p^{n} \mathbb{Z}$ is denoted by $\hat{\mathbb{Z}}_{p}$ and is called the ring of p-adic integers. ${ }^{\dagger}$ It turns out that $\hat{\mathbb{Z}}_{p}$ is a "complete local" ring with a unique nonzero prime (principal) ideal generated by $\phi(p)$.

If $\left\{A_{i}\right\}$ is a family of subgroups of an abelian group then $\lim _{\leftrightarrows} A_{i}=\cap A_{i}$. For more about limits see Appendix.

Exercises 2.1

1. Let H and K be two subgroups of G.
(i) If H, K are finite then we have

$$
|H K|=o(H) o(K) / o(H \cap K) .
$$

(ii) The subset $H K$ is a subgroup if and only if $H K=K H$.
(iii) The subset of the form $H g K$ is called a double coset. Show that G is a disjoint union of double cosets. The set of all double cosets is denoted by $H \backslash G / K$.
2. Let G be a finite group and H be a proper subgroup. Then $\underset{g \in G}{\cup} g H g^{-1} \neq G$. (Hint : The number of elements of $\cup g H g^{-1}<o(G)$.)
3. Prove the following statements.
(i) $\operatorname{In}(2.1 .2)\left({ }^{*}\right)$ show that $G_{3} \cong G_{2} / \operatorname{Im}\left(f_{1}\right)$.
(ii) If H, N are subgroups of G and N is normal then we have an exact sequence

$$
(e) \longrightarrow H \cap N \longrightarrow H \longrightarrow N H / N \longrightarrow(e)
$$

so that we have an isomorphism $H / N \cap H \cong N H / N$.
(iii) If $N_{1} \subseteq N_{2}$ are normal subgroups of G then

$$
(e) \longrightarrow N_{2} / N_{1} \longrightarrow G / N_{1} \longrightarrow G / N_{2} \longrightarrow(e)
$$

is an exact sequence so that we have an isomorphism $G / N_{2} \cong\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$.

[^1]4. Show that D_{4} and \mathfrak{S}_{3} are semidirect products of their proper subgroups.
5. The group of invertible upper triangular matrix (under multiplication) of size n is a semidirect product of the group of diagonal matrices and the group of upper triangular matrices with 1's on the diagonal.
6. A group G is a direct product of N and H if and only if an extension
$$
(e) \longrightarrow N \xrightarrow{\iota} G \xrightarrow{\pi} H \rightarrow(e)
$$
has a retraction $r: G \rightarrow N$ (i.e., r is a group homomorphism such that $r \circ \iota=\mathrm{id}_{N}$).
7. In the category of abelian groups show that the coproduct of a family $\left\{A_{i}\right\}$ becomes the direct sum $\oplus A_{i}$.
8. Prove the following statements.
(i) There is a surjection $G_{1} \coprod G_{2} \rightarrow G_{1} \times G_{2}$.
(ii) $G_{1} \amalg G_{2} \cong G_{2} \amalg G_{1}$.
(iii) If N is a normal subgroup of $G_{1} \coprod G_{2}$ generated by G_{1} then $\left(G_{1} \coprod G_{2}\right) / N \cong G_{2}$.
(iv) If $f_{i}: G_{i} \rightarrow H_{i}(i=1,2)$ are group homomorphisms then there is a group homomorphism
$$
f_{1} \amalg f_{2}: G_{1} \amalg G_{2} \longrightarrow H_{1} \amalg H_{2} .
$$

(v) Prove $\mathbb{Z} / 2 \amalg \mathbb{Z} / 3=\left\langle a, b \mid a^{2}=b^{3}=e\right\rangle$. Also show that this group is isomorphic to $\mathrm{SL}(2, \mathbb{Z}) /(\pm I)$. (Hint: Let $S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and send a to S and b to ST.)
9. Let $G=G_{1} \coprod_{H} G_{2}$.
(i) Show G is finitely generated if G_{1} and G_{2} are finitely generated.
(ii) If G_{1}, G_{2} are finitely generated then G is finitely presented if and only if H is finitely presented.
10. Prove:
(i) Show that a finite group is finitely presented.
(ii) Construct a subgroup of the free group on two generators which is not finitely generated.
11. Let G be free a group on a set X.
(i) If G is also free on a set Y then X and Y has the same cardinality. The common cardinality is called the rank.
(ii) The free group on one generator is isomorphic to the infinite cyclic group \mathbb{Z}.
(iii) If G is a free group is of rank ≥ 2 then G has a free subgroup of any finite rank.
12. Prove that a group G is free if and only if for every short exact sequence

$$
(e) \longrightarrow H \longrightarrow E \longrightarrow G \longrightarrow(e)
$$

there is a section $s: G \rightarrow E$.
13. Prove:
(i) The group $\left\langle x, y \mid x^{2}=y^{3}=(x y)^{2}=e\right\rangle$ is isomorphic to \mathfrak{S}_{3}.
(ii) The group $\left\langle x, y \mid x^{3}=y^{2}=(x y)^{3}=e\right\rangle$ is isomorphic to A_{4}.
14. The quaternion group Q (2.1.12) is isomorphic to the group $\{ \pm 1, \pm i, \pm j, \pm k\}$ with the relations $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j$. What is the center of Q ? Every subgroup of Q is normal. The quaternion group Q is not isomorphic to D_{4}.
15. Let $G_{m, n, r, s}$ be the group defined by the presentation

$$
G_{m, n, r, s}=\left\langle x, y \mid x^{m}=e, y^{n}=x^{r}, y x y^{-1}=x^{s}\right\rangle
$$

where m, n are nonnegative integers and r, s are arbitrary integers such that $m, r(s-1)$ and $s^{n}-1$ are not all zero. Let $d=\operatorname{gcd}\left\{m,|r(s-1)|,\left|s^{n}-1\right|\right\}$. Then the order of $G_{m, n, r, s}$ is $d n$. Also show that the subgroup N generated by x is normal and find $o(N)$.
16. With the notations of (1.2.5), show that the pullback is given by

$$
A \times_{C} B=\{(a, b) \mid f(a)=g(a)\}
$$

in the category of groups. In the category of abelian groups the push out is given by

$$
X=A \times B /\{(f(a),-g(a)) \mid a \in A\} .
$$

17. Prove:
(i) There is a natural injection $\phi: \mathbb{Z} \rightarrow \hat{\mathbb{Z}}_{p}$.
(ii) $\left(x_{0}, x_{1}, \ldots\right) \in \hat{\mathbb{Z}}_{p}$ is a unit if and only if $x_{0} \neq 0$.
(iii) $\hat{\mathbb{Z}}_{p}$ is a local ring with a unique nonzero prime (principal) ideal generated by $\phi(p)$.
18. Prove that $\underset{{ }_{n}}{\lim _{n}} R[X] /\left(X^{n}\right) \cong R[[X]]$.
19. If $\left\{A_{i}\right\}$ is a family of subgroups of an abelian group then $\underset{\leftrightarrows}{\lim } A_{i}=\cap A_{i}$.
20. Let $\hat{\mathbb{Q}}_{p}$ be the quotient field of $\hat{\mathbb{Z}}_{p}$. Prove that $\underset{\longrightarrow}{\lim } \mathbb{Z} / p^{n} \mathbb{Z} \cong \hat{\mathbb{Q}}_{p} / \hat{\mathbb{Z}}_{p}$.
21. Prove $\underset{\longleftarrow}{\lim }\{\mathbb{Z} / n \mathbb{Z}$: all positive integer $n\} \cong \prod_{\text {all prime } p} \hat{\mathbb{Z}}_{p}$

2.2 Structure of groups

(2.2.1) (Free abelian groups) An abelian group G is said to be free (resp. finitely generated free if G is isomorphic to a direct sum (resp. finite direct sum) of copies of \mathbb{Z}. We will deal with the finitely generated case for clarity even though sometimes the arguments goes through for the infinite case also.

Let G be the additive group \mathbb{Z}^{n} (the n-copies of \mathbb{Z}). Suppose G is also isomorphic to \mathbb{Z}^{m} for some m, say $\phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ is an isomorphism. Reduce the isomorphism ϕ modulo a prime p to get the isomorphism $\bar{\phi}:(\mathbb{Z} / p \mathbb{Z})^{n} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{m}$ of vector spaces over the finite field \mathbb{Z} / p. From the linear algebra we see that $n=m$. The uniquely determined integer n is called the rank of the free abelian group G.

The group \mathbb{Z}^{n} is generated by $e_{i}=(0, \ldots, 1, \ldots, 0)(i=1,2, \ldots, n)$ where 1 is in the i-th place and 0 elsewhere. These are linearly independent over \mathbb{Z} i.e., if $\sum n_{i} e_{i}=0$ with $n_{i} \in \mathbb{Z}$ then we have $n_{i}=0$ for all i. A linearly independent set of an abelian group which generates G is called a basis of G. Hence we showed that \mathbb{Z}^{n} has a basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Conversely if $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of an abelian group G then G is isomorphic to \mathbb{Z}^{n}, an isomorphism being given by sending x_{i} to e_{i}. Hence an abelian group is free if and only if it has a basis. Since the cardinality of a basis is uniquely determined, a free abelian group is uniquely determined by its rank up to an isomorphism.

A free abelian group G is a free object on its basis $X=\left\{x_{1}, \ldots, x_{n}\right\}$ in the sense of (1.2.4). In fact, let H be an abelian group and $f: X \rightarrow H$ be a map (of sets) such that $f\left(x_{i}\right)=h_{i}$.

$$
\begin{gathered}
X=\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow G \\
f \searrow \quad \swarrow \bar{f} \\
H
\end{gathered}
$$

Then we define $\bar{f}: G \rightarrow H$ by $\bar{f}\left(x_{i}\right)=h_{i}$ and extend it by using \mathbb{Z}-linearity.
(2.2.2) Let G be an (additive) abelian group with the identity element 0 . An element $g \in G$ is said to be torsion if there is an integer n such that $n g=0$. We say that G is a torsion group if every element of G is torsion; G is torsion free if every non-zero element of G is not a torsion. Define

$$
G_{\tau}=\{g \in G \mid g \text { is torsion }\} .
$$

Then G_{τ} is a torsion group, and G / G_{τ} is torsion free. We have an exact sequence

$$
(0) \longrightarrow G_{\tau} \longrightarrow G \longrightarrow G / G_{\tau} \longrightarrow(0)
$$

where G_{τ} is a torsion group and G / G_{τ} is torsion free.
(2.2.3) Let G, G_{1} and G_{2} be abelian groups. Then the following conditions are equivalent.
(i) $G \cong G_{1} \oplus G_{2}$.
(ii) We have an exact sequence

$$
\begin{equation*}
(0) \longrightarrow G_{1} \xrightarrow{\iota} G \xrightarrow{\pi} G_{2} \longrightarrow(0) \tag{*}
\end{equation*}
$$

and there is a group homomorphism $s: G_{2} \rightarrow G$ (called a section) such that $\pi \circ s=\mathrm{id}$, i.e., the above exact sequence splits.
(iii) We have an exact sequence $\left(^{*}\right.$) of (ii) and a group homomorphism $r: G \rightarrow G_{1}$ (called a retraction) such that $r \circ \iota=\mathrm{id}$.
(iv) There are endomorphisms $\phi_{i}: G \rightarrow G(i=1,2)$ such that

$$
\operatorname{Im}\left(\phi_{i}\right)=G_{i}, \phi_{1}+\phi_{2}=\operatorname{id}_{G} \text { and } \phi_{i} \circ \phi_{j}=\delta_{i j} \phi_{j}
$$

where $\delta_{i j}$ is the Kronecker delta.
Furthermore, if G_{2} is a free abelian group in (*) of (ii) then the exact sequence splits. (See Ex. 1 for further equivalent conditions.)

Proof. (i) \Rightarrow (ii) By identifying G with $G_{1} \oplus G_{2}$ we choose ι to be the inclusion of G_{1} into G and π be the projection to the second factor. Now define $s(x)=(0, x)$.
(ii) \Rightarrow (iii) Let $x \in G$. Then $x-s \circ \pi(x)$ is in the kernel of π which is the same as the image of ι. Since ι is injective, there is a unique $y \in G_{1}$ such that $\iota(y)=x-s \circ \pi(x)$. Now define $r(x)=y$. Now one checks that $r \circ \iota=\mathrm{id}$.
(iii) \Rightarrow (i) Define a map $G \rightarrow G_{1} \oplus G_{2}$ by sending an element x of G to $(r(x), \pi(x))$. For the inverse of this map let $(a, b) \in G_{1} \oplus G_{2}$ and let $b^{\prime} \in G$ be such that $\pi\left(b^{\prime}\right)=b$. Now map (a, b) to $\iota(a)+b^{\prime}-\iota \circ r\left(b^{\prime}\right)$. One checks that these maps are inverses to each other.
(i) \Rightarrow (iv) Let ϕ_{i} be the composition $G \xrightarrow{\text { proj. }} G_{i} \xrightarrow{\text { incl. }} G$. Now it is easy to check (iv).
(iv) \Rightarrow (i) Exercise.

For the last part, let $\left\{z_{i}\right\}$ be a free basis of G_{2} and x_{i} be a lift of z_{i} in G. Then there must be a torsion free element in the coset $x_{i}+G_{1}$ in G, say \bar{x}_{i} (otherwise $\pi\left(x_{i}\right)=z_{i}$ must be a torsion). Hence we can define the map s by requiring $s\left(z_{i}\right)=\bar{x}_{i}$.

We remark here that if the groups are non-abelian then the results above are false. For example, consider a semidirect product $N \times_{\phi} H$. We have an exact sequence

$$
(e) \longrightarrow N \xrightarrow{\iota} N \times_{\phi} H \xrightarrow{\pi} H \longrightarrow(e) .
$$

There is a section $s: H \rightarrow N \times_{\phi} H$ defined by $s(h)=(0, h)$. However, $N \times_{\phi} H$ is not isomorphic to the direct sum $N \oplus H$ unless ϕ is trivial. Cf. Ex.2.1.6.
(2.2.4) A subgroup H of a free abelian group G of rank n is free of rank $\leq n$. A finitely generated torsion free abelian group is free.

Proof. We induct on n. The result for $n=1$ is well known. (A subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for some integer n and it is isomorphic to \mathbb{Z}.) Let $G=\stackrel{n}{i=1} \mathbb{Z} x_{i}(n>1)$. Consider
the projection $f: G \rightarrow \mathbb{Z} x_{1}$ sending $\sum n_{i} x_{i}$ to $n_{1} x_{1}$. Let H_{1} be the kernel of $\left.f\right|_{H}$. Then H_{1} is a subgroup of $\mathbb{Z} x_{2} \oplus \cdots \oplus \mathbb{Z} x_{n}$. By induction on rank, H_{1} is free of rank $\leq n-1$. Now $f(H)$ is either 0 or infinite cyclic. We have an exact sequence,

$$
(0) \longrightarrow H_{1} \longrightarrow H \longrightarrow f(H) \longrightarrow(0),
$$

with $f(H)$ free of rank 1 or 0 . Hence $H \cong H_{1} \oplus f(H)(2.2 .3)$. Hence H is free of rank $\leq n$.
For the second statement, let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal \mathbb{Z}-linear independent subset of G. Let H be the subgroup of G generated by S. Then H is free (exercise). If $y \in G$, then $\left\{y, x_{1}, \ldots, x_{n}\right\}$ is linearly dependent. Hence there are integers m 's not all zero such that

$$
m y+m_{1} x_{1}+\cdots+m_{n} x_{n}=0
$$

Hence $m y$ lies in H. Since this is true for a finite set of generators of G, there is a nonzero integer k such that $k G \subseteq H$. Since the map sending x to $k x$ is a monomorphism, we see that G is isomorphic to $k G=\{k g \mid g \in G\}$. The group $k G$, being a subgroup of H, is free. Since the multiplication-by- k map is an isomorphism between G and $k G$ we conclude that G is free.
(2.2.5) Throughout this subsection G is a finite abelian group. Let G be a finite abelian group of order n, and let $n=r s$ where r and s are relatively prime. Then there are integers a and b such that $r a+s b=1$. Therefore, $G=r a G+s b G \subseteq r G+s G \subseteq G$. Hence we have equalities everywhere. On the other hand, if $g \in r G \cap s G$ then $s g=r g=0$. Hence $g=r a g+s b g=0$. And therefore $G=r G \oplus s G$.

For a nonnegative integer k let

$$
G_{k}=\{g \in G \mid k g=0\}
$$

Then since $r s G=n G=0$, we have $s G \subseteq G_{r}$. Conversely, if $g \in G_{r}$ then $g=r a g+s b g=$ $s b g$. Therefore $s G=G_{r}$. Similarly we have $r G=G_{s}$. Hence $G=G_{r} \oplus G_{s}$, by Ex. 1

Summing up we have proved that if G is an abelian group of order $n=r s$ where r and s are relatively prime, then

$$
\begin{equation*}
G=G_{r} \oplus G_{s} \tag{1}
\end{equation*}
$$

Hence if G is an abelian group of order $p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ then

$$
G=G_{p_{1}^{r_{1}}} \oplus \cdots \oplus G_{p_{t}^{r_{t}}} .
$$

In particular, $\mathbb{Z} / m n \cong \mathbb{Z} / n \oplus \mathbb{Z} / m$ for relatively prime integers m and n.
Let p be a prime and define

$$
G(p)=\left\{g \in G \mid p^{n} g=0 \text { for some } n\right\}
$$

which we call the p-primary part of G. If G is finite then $G(p)$ is of prime power order i.e., a p-group. Now it is easy to show that $G\left(p_{i}\right)=G_{p_{i}^{r_{i}}}$. Therefore if G is an abelian group of order $n=p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ then G is isomorphic to the direct sum of its primary parts

$$
\begin{equation*}
G \cong G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{t}\right) \tag{2}
\end{equation*}
$$

with each $G\left(p_{i}\right)$ a p_{i}-group.
(2.2.6) A finite abelian p-group G is isomorphic to a product of cyclic p-groups i.e., G is isomorphic to

$$
\mathbb{Z} / p^{r_{1}} \oplus \cdots \oplus \mathbb{Z} / p^{r_{n}},
$$

where $r_{1} \geq r_{2} \geq \cdots \geq r_{n}$, and the sequence of integers $\left(r_{1}, \ldots, r_{n}\right)$ is uniquely determined.
Proof. Let $x_{1} \in G$ be an element of maximal order, say $p^{r_{1}}$. Let G_{1} be the cyclic subgroup of G generated by x_{1}. Then, by induction, we see that

$$
\begin{equation*}
G / G_{1} \cong \bar{G}_{2} \oplus \cdots \oplus \bar{G}_{n} \tag{}
\end{equation*}
$$

where \bar{G}_{i} are cyclic of order $p^{r_{i}}$ generated by \bar{x}_{i} and $r_{2} \geq \cdots \geq r_{n}$. Now there is an element $x_{i} \in G$ which represents \bar{x}_{i} and is of order $p^{r_{i}}$. To see this we may assume $n=2$ by induction. Let x_{2}^{\prime} be a lift of \bar{x}_{2} in G. Then $p^{r_{2}} x_{2}^{\prime} \in G_{1}$ and $p^{r_{1}} x_{2}^{\prime}=0$ by maximality of (p-power) $p^{r_{1}}$. Since G_{1} is cyclic of order $p^{r_{1}}$ with $r_{1} \geq r_{2}$, we see $p^{r_{2}} x_{2}^{\prime} \in \operatorname{Ker}\left(G_{1} \xrightarrow{p^{r_{1}-r_{2}}} G_{1}\right)$ $=\operatorname{Im}\left(G_{1} \xrightarrow{p^{r_{2}}} G_{1}\right)$. Hence there is $z \in G_{1}$ such that $p^{r_{2}} x_{2}^{\prime}=p^{r_{2}} z$. Then $x_{2}=x_{2}^{\prime}-z$ will represent \bar{x}_{2} with precise order $p^{r_{2}}$.

Let G_{i} be the cyclic subgroup of G generated by x_{i}. Now we will show that $G \cong$ $G_{1} \oplus \cdots \oplus G_{n}$ by using Ex.1. In fact, if $x \in G$ then $\bar{x}=m_{2} \bar{x}_{2}+\cdots+m_{n} \bar{x}_{n}$ for some integers m_{2}, \ldots, m_{n}. Hence $x-m_{2} x_{2}-\cdots-m_{n} x_{n}$ is in G_{1}. Therefore we can find m_{1} such that $x=m_{1} x_{1}+\cdots+m_{n} x_{n} ; G$ is generated by x_{1}, \ldots, x_{n}. Now we need to show that $\left(G_{1}+\cdots+G_{i}\right) \cap G_{i+1}=(0)$. Let $x \in\left(G_{1}+\cdots+G_{i}\right) \cap G_{i+1}$. Then we can write

$$
x=m_{1} x_{1}+\cdots+m_{i} x_{i}=-m_{i+1} x_{i+1}
$$

with $m_{j}<p^{r_{j}}(j=1,2, \ldots, i+1)$. Taking bar, we see that $m_{2}=\cdots=m_{i+1}=0$ by (*). This in turn implies that $m_{1}=0$ also. Hence all m_{j} 's are zero.

We leave the proof of uniqueness of $\left(r_{1}, \ldots, r_{n}\right)$ as an exercise.
(2.2.7) Let G be a finite abelian group. Then by (2.2.6) above, we have

$$
\begin{equation*}
G \cong G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{n}\right), \quad \text { where } \quad G\left(p_{i}\right) \cong \mathbb{Z} / p_{i}^{e_{i}} \oplus \cdots \oplus \mathbb{Z} / p_{i}^{e_{i s}}, \tag{1}
\end{equation*}
$$

where p 's are primes and e 's are positive integers such that $e_{i_{1}} \geq \cdots \geq e_{i_{s}}$.
Now using the fact that $\mathbb{Z} / m n \cong \mathbb{Z} / n \oplus \mathbb{Z} / m$ for relatively prime integers m and n, we see that (by collecting the terms of different primes) G is isomorphic to a direct sum of the cyclic group of the type $\mathbb{Z} / p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$. For example,

$$
\mathbb{Z} / 2^{3} \times \mathbb{Z} / 2^{2} \times \mathbb{Z} / 2 \times \mathbb{Z} / 3^{5} \times \mathbb{Z} / 3 \times \mathbb{Z} / 5 \cong \mathbb{Z} / 2^{2} 3^{5} 5 \times \mathbb{Z} / 2^{2} 3 \times \mathbb{Z} / 2
$$

Here the first factor on the right hand side is the product of the terms of the highest prime power from each prime and the second factor is the product of the factors of the next highest prime power orders etc.

Hence we conclude that if G is a finite abelian group then there is a unique sequence of integers $\left(m_{1}, \ldots, m_{r}\right)$ such that

$$
\begin{equation*}
G \cong \mathbb{Z} / m_{1} \oplus \cdots \oplus \mathbb{Z} / m_{r} \tag{2}
\end{equation*}
$$

with $m_{r}\left|m_{r-1}\right| \cdots \mid m_{1}$. The sequence (m_{1}, \ldots, m_{r}) is called the invariants of the finite abelian group G.

As an exercise find all isomorphism classes of abelian group of order $2^{3} 3^{3} 5^{2}$.
(2.2.8) (Jordan-Hölder Theorem) Let G be a group. A (finite) sequence of subgroups

$$
G=G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{n}=(e)
$$

is called a composition series if G_{i+1} is normal in G_{i} and G_{i} / G_{i+1} is simple (i.e., it has no nontrivial normal subgroup). A group may or may not have a composition series; for example \mathbb{Z} has no composition series for any nonzero subgroup of \mathbb{Z} contains an infinite descending chain of subgroups.

Let

$$
G=H_{1} \supseteq H_{2} \cdots \supseteq H_{m}=(e)
$$

be another composition series of G. We say that they are equivalent if $m=n$ and $G_{i} / G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i)+1}$ for some permutation σ of $\{1,2, \ldots, n\}$. Jordan-Hö1der theorem asserts that if a group G has a composition series then any two of the composition series are equivalent. For a proof we refer to any algebra text. As an exercise find two composition series of the group $\mathbb{Z} / 3^{2} 5^{3}$ and show that they are equivalent.
(2.2.9) Let G be a finite group.
(i) If p is a prime number dividing the order of G then G has a subgroup of order p.
(ii) (Sylow Theorem) Let p^{n} be the highest power of p dividing the order of G. Then there is a subgroup of order p^{n} in G which we call a p-Sylow subgroup.

Proof. (i) Recall the class formula (2.1.4)(2)

$$
o(G)=o(Z(G))+\sum\left[G, I_{x}\right] .
$$

If $p \mid o(Z(G))$ then we can find a subgroup of $Z(G)$ of order p by the classification of finite abelian groups (2.2.7). Now suppose $p \nmid o(Z(G))$. Since $p \mid o(G)$ we must have $p \nmid\left[G: I_{x}\right]$ for some x by the class formula (2.1.4). Hence $p \mid o\left(I_{x}\right)$ and $o\left(I_{x}\right)<o(G)$. By induction I_{x} has a subgroup of order p which completes the proof.
(ii) If $o(G)=p$, then there is nothing to prove. If there is a subgroup H whose index is prime to p, then $p^{n} \mid o(H)$. Hence, by induction, H (hence G) has a subgroup of order p^{n}.

Therefore we may assume that every subgroup has an index divisible by p. From the class formula we have $p \mid o(Z(G))$ since $p \mid\left[G, I_{x}\right]$. Let a be an element of $Z(G)$ whose order is $p(2.2 .7)$, and let H be the subgroup generated by a. Then H is normal in G, since H is contained in the center. Let $f: G \rightarrow G / H$ be the canonical map. Then $p^{n-1} \mid o(G / H)$. By induction there is a subgroup K of G / H of order p^{n-1}. Now the subgroup $f^{-1}(K)$ of G has order p^{n}.
(2.2.10) (Sylow Theorems) Let G be a finite group.
(i) If H is a p-group then H is contained in a p-Sylow subgroup.
(ii) All p-Sylow subgroups are conjugate.
(iii) The number of p-Sylow subgroups is congruent to 1 modulo p and divides the order of G.

Proof. (i) Let \mathcal{S} be the set of all p-Sylow subgroups of G and $P \in \mathcal{S}$. We let G act on \mathcal{S} via conjugation (note that a conjugation of a p-Sylow subgroup is again a p-Sylow)

$$
\begin{aligned}
& G \times \mathcal{S} \longrightarrow \mathcal{S} \\
& (g, Q) \mapsto g Q g^{-1}
\end{aligned}
$$

Then the isotropy group I_{P} contains P. Let \mathcal{S}_{0} be the orbit of P. Then by the maximality (of p-power) of P the cardinality of \mathcal{S}_{0} is prime to p (since $\left|\mathcal{S}_{0}\right|=\left[G: I_{P}\right]$ and $P \subseteq I_{P}$). We let H act on \mathcal{S}_{0} via conjugation;

$$
H \times \mathcal{S}_{0} \rightarrow \mathcal{S}_{0}
$$

Since \mathcal{S}_{0} is a disjoint union of H-orbits, and since the index of a proper subgroup of H is divisible by p, at least one of H-orbit contains exactly one element, say P^{\prime}. Hence $H \subseteq N\left(P^{\prime}\right)$.

Now we contend that $H \subseteq P^{\prime}$. In fact, since P^{\prime} is normal in $N\left(P^{\prime}\right), H P^{\prime}$ is a subgroup (of $N\left(P^{\prime}\right)$) and P^{\prime} is normal in $H P^{\prime}$. We have an isomorphism (Ex.(2.1.3)),

$$
H P^{\prime} / P^{\prime} \xrightarrow{\cong} H / H \cap P^{\prime} .
$$

Hence the order of $H P^{\prime}$ is a power of p. Now the maximality of P^{\prime} implies that $P^{\prime}=H P^{\prime}$. Therefore $H \subseteq P^{\prime}$.
(ii) In the proof of (i), we let H be one of p-Sylow subgroups. Then $H \subseteq P^{\prime}$ which belongs to the orbit \mathcal{S}_{0} of P. Since both are maximal p-subgroups, we have $H=P^{\prime}$. Hence they are conjugate.
(iii) In the proof of (i), we let $H=P$. Then exactly one H-orbit of \mathcal{S}_{0} contains single element, namely P. In fact, obviously the orbit of $P \in \mathcal{S}_{0}$ is $\{P\}$. On the other hand, if $Q \in \mathcal{S}_{0}$ has a single orbit then as in the proof of (i) above we see $P \subseteq Q$. Thus $P=Q$ by the maximality of p-power order.

Hence we conclude that the number of conjugates of P is congruent to 1 modulo p. Finally, since the number of conjugates is $\left|\mathcal{S}_{0}\right|=\left[G: I_{P}\right]$, it divides the order of G.
(2.2.11) (Groups of order $\boldsymbol{p q}$) Let G be a group of order $p q$ where p, q are primes with $p>q$.
(i) If $q \nmid(p-1)$ then G is isomorphic to $\mathbb{Z} / p q$.
(ii) If $q \mid(p-1)$ then G is isomorphic to either $\mathbb{Z} / p q$ or

$$
\left\langle a, b \mid a^{p}=e, b^{q}=e, b a=a^{s} b\right\rangle
$$

where $s \not \equiv 1(\bmod p)$ and $s^{q} \equiv 1(\bmod p)$.
Proof. Let A, B be subgroups of order p and q respectively. Then A and B are isomorphic to \mathbb{Z} / p and \mathbb{Z} / q. Further, A is normal subgroup of G (Ex.18). One checks that $A \cap B=(e)$ and $A B=G$. Hence G is a semidirect product $A \times_{\phi} B$ for some $\phi: B \rightarrow \operatorname{Aut}(A)$ (2.1.6). The group $\operatorname{Aut}(A)$ is isomorphic to the group of units $(\mathbb{Z} / p)^{*}$ of (\mathbb{Z} / p) which is cyclic of order $(p-1)$.
(i) If $q \nmid(p-1)$ then there is no nontrivial group homomorphism ϕ since B is cyclic of prime order ϕ must be injective unless ϕ is trivial. Hence we have

$$
G \cong A \oplus B \cong \mathbb{Z} / p \oplus \mathbb{Z} / q \cong \mathbb{Z} / p q .
$$

(ii) Now suppose $q \mid(p-1)$. If ϕ is a trivial homomorphism then G is isomorphic to $\mathbb{Z} / p q$ as in (i) above.

If ϕ is nontrivial then ϕ is determined by $\phi(1)=s$ in $(\mathbb{Z} / p)^{*}$. Since ϕ is nontrivial and since $\phi(q)$ must be the identity we have

$$
s \not \equiv 1(\bmod p) \quad \text { and } \quad s^{q} \equiv 1(\bmod p) .
$$

Now G is generated by $a=(1,0)$ and $b=(0,1)$ and their orders are p and q respectively i.e., $a^{p}=e$ and $b^{q}=e$. Denoting the group operation in $A \times{ }_{\phi} B$ by o, we compute,

$$
b \circ a=(0,1) \circ(1,0)=\left(0+1^{\phi(1)}, 1\right)=(s, 0) \circ(0,1)=a^{s} \circ b .
$$

(2.2.12) Let G be a group, and H_{1} and H_{2} be two subgroups of G. We define [H_{1}, H_{2}] be the subgroup of G generated by the elements of the form

$$
h_{1} h_{2} h_{1}^{-1} h_{2}^{-1} \text { where } h_{1} \in H_{1} \text { and } h_{2} \in H_{2} .
$$

We define the subgroups $D^{i}(G)$ and $C^{i}(G)$ as follows;

$$
\begin{gathered}
D^{1}(G)=C^{1}(G)=[G, G] ; \\
D^{i}(G)=\left[D^{i-1}(G), D^{i-1}(G)\right] \text { and } C^{i}(G)=\left[G, C^{i-1}(G)\right] .
\end{gathered}
$$

Both $D^{i}(G)$ and $C^{i}(G)$ are normal subgroups of G (Ex.14). We have the descending chain of subgroups,

$$
\begin{aligned}
& D^{1}(G) \supseteq D^{2}(G) \supseteq D^{3}(G) \supseteq \cdots, \\
& C^{1}(G) \supseteq C^{2}(G) \supseteq C^{3}(G) \supseteq \cdots,
\end{aligned}
$$

which are called the derived series and the lower central series respectively. Let H be a subgroup of G and $N \triangleright G$ and let $\pi: G \rightarrow G / N$ be the projection. Then we have

$$
\begin{gathered}
D^{i}(H) \subseteq D^{i}(G), C^{i}(H) \subseteq C^{i}(G) \text { and } \\
\pi\left(D^{i}(G)\right)=D^{i}(G / N), \pi\left(C^{i}(G)\right)=C^{i}(G / N)
\end{gathered}
$$

Note that $C^{i}(G) / C^{i+1}(G)$ is in the center of $G / C^{i+1}(G)$ (Ex.19). A group G is said to be solvable (resp. nilpotent) if $D^{k+1}(G)$ (resp. $\left.C^{k+1}(G)\right)$ is trivial for some integer k; the smallest such k is called the solvability (resp. nilpotency) class of G. Since $D^{i}(G) \subseteq C^{i}(G)$ we see that a nilpotent group is solvable. Trivially an abelian group is nilpotent. A subgroup and a quotient of a solvable (resp. nilpotent) group are solvable (resp. nilpotent).
(2.2.13) The following conditions are equivalent.
(i) G is nilpotent with nilpotency class $\leq n$.
(ii) There is a sequence of subgroups

$$
G=G^{1} \supseteq G^{2} \supseteq \cdots \supseteq G^{n+1}=(e)
$$

such that $\left[G, G^{k}\right] \subseteq G^{k+1}(1 \leq k \leq n)$. (Note G^{k} is necessarily normal in G.)
(iii) There is a subgroup A in $Z(G)$ such that G / A is nilpotent with nilpotency class $\leq(n-1)$.

Proof. (i) \Rightarrow (ii) Take $G^{k}=C^{k}(G)$.
(ii) \Rightarrow (i) By induction one shows that $C^{k}(G) \subseteq G^{k+1}$.
(iii) \Rightarrow (i) Let $f: G \rightarrow G / A$ be the canonical homomorphism. Then $f\left(C^{n}(G)\right)=$ $C^{n}(G / A)=(e)$ and hence $C^{n}(G) \subseteq A$. Therefore, $C^{n+1}(G)=(e)$.
(i) \Rightarrow (iii) Take $A=C^{n}(G)$. Cf. Ex. 12 .
(2.2.14) The following conditions are equivalent.
(i) G is solvable with solvability class $\leq n$.
(ii) There is a sequence of normal subgroups of G

$$
G=G^{1} \supseteq G^{2} \supseteq \cdots \supseteq G^{n+1}=(e),
$$

such that G^{k+1} is normal in G^{k} and G^{k} / G^{k+1} is commutative.
(iii) There is a normal commutative subgroup A of G such that G / A is solvable.

Proof. (i) \Rightarrow (ii) Take $G^{k}=D^{k}(G)$.
(ii) \Rightarrow (iii) Take $A=G^{n}$.
(iii) \Rightarrow (i) Exercise.
(2.2.15) Let G be a finite group. The following conditions are equivalent.
(i) G is nilpotent.
(ii) For any prime p, there is a (unique) normal p-Sylow subgroup of G.
(iii) G is a product of p-groups (for various p 's).

Proof. (i) \Rightarrow (ii) Let P be a p-Sylow subgroup. First we claim $N(P)=N N(P)$. For this let $g \in N N(P)$ and write $N=N(P) ; g N g^{-1} \subseteq N$. Then $g P g^{-1}$ and P are p-Sylow subgroups of N. Hence there is $h \in N$ such that $g P g^{-1}=h P h^{-1}$. Thus $h^{-1} g \in N$; $g \in h N=N$. Obviously $N(P) \subseteq N N(P)$ by definition.

This in turn implies $N(P)(=N)=G$. In fact, assume the contrary i.e., $N \neq G$. Let G^{k} be as in (2.2.13)(ii) and $N^{k}=N \cdot G^{k}$. Then we have a chain $G=N^{1} \supseteq N^{2} \supseteq \cdots \supseteq N$. First we claim N^{k+1} is normal in N^{k}. For this let $h \in N$ then $h N^{k+1} h^{-1}=h N \cdot G^{k+1} h^{-1}=$ $h N h^{-1} G^{k+1}=N \cdot G^{k+1}=N^{k+1}$ since N and G^{k+1} are normal in G. On the other hand if $s \in G^{k}$ and $h \in N$ then $s h s^{-1}=s h s^{-1} h^{-1} h \in\left[G, G^{k}\right] \cdot N \subseteq G^{k+1} N=N^{k+1}$. Hence N and G^{k} normalize $N^{k+1} ; N^{k+1}$ is normal in N^{k} as claimed. Finally since we assumed $G \neq N$ we can choose the largest integer k such that $N^{k} \supsetneq N$ then we see that the normalizer of N is strictly bigger than N which contradicts to our previous assertion.
(ii) \Rightarrow (iii) Let I be the set of primes dividing the order of G and for each $p \in I$ let P_{p} be the p-Sylow subgroup of G. Let ϕ be the canonical map $\prod_{p \in I} P_{p} \rightarrow G$ which maps $\left(g_{p}\right)_{p \in I}$ to $\prod_{p \in I} g_{p}$. We claim that ϕ is an isomorphism. In fact, if $g \in P_{p}$ and $h \in P_{q}$ for
distinct primes p, q then $g h g^{-1} h^{-1} \in P_{p} \cap P_{q}=(e)$. Hence $g h=h g$. This implies that ϕ is a group homomorphism. To see ϕ is onto first note that $\operatorname{Im}(\phi)$ contains all P_{p} 's since $\left.\phi\right|_{P_{p}}$ is the inclusion. Hence the order of $\operatorname{Im}(\phi)$ is divisible by the highest power of primes which divides $o(G)$. Hence $G=\operatorname{Im}(\phi)$. Since the orders of the groups $\prod_{p \in I} P_{p}$ and G are the same, ϕ is an isomorphism.
(iii) \Rightarrow (i) A p-group is nilpotent. In fact, we know that the center is nontrivial by the class formula. By induction, $G / Z(G)$ is nilpotent. Now G is nilpotent by (2.2.13)(iii). To finish the proof use the fact that a product of nilpotent groups are nilpotent Ex. 12 (ii).
(2.2.16) Early 1980 's, people succeeded in classifying all finite simple groups. For a brief historical survey article of this matter see the article by Ron Solomon "On finite simple groups and their classification", AMS, Notice, Vol. 42, No. 2 (1995).

Exercises 2.2

1. Let G be an abelian group, G_{1}, \ldots, G_{n} be subgroups of G. Then the following conditions are equivalent.
(i) $G \cong G_{1} \oplus \cdots \oplus G_{n}$.
(ii) Every element of $x \in G$ can be written uniquely as $x=x_{1}+\cdots+x_{n}$ where x_{i} is an element of $G_{i}(i=1, \ldots, n)$.
(iii) $G_{1}+\cdots+G_{n}=G$ and $\left(G_{1}+\cdots+G_{i}\right) \cap G_{i+1}=(0)$ for each i.
2. Answer the following questions.
(i) List all nonisomorphic abelian groups of order $2^{3} 3^{3} 5^{2}$.
(ii) List all groups of order 8 (abelian or not). Show your list is complete.
3. Express $(\mathbb{Z} / n)^{*}$, the group of units of \mathbb{Z} / n as a direct product of cyclic groups of the form (2.2.7) (2).
4. The group of rational numbers \mathbb{Q} is not finitely generated; it is not free either.
5. An abelian group is a free object in the category of abelian groups if and only if it is isomorphic to a direct sum of copies (finite or not) of \mathbb{Z} 's.
6. Let p be a prime number.
(i) A group of order p^{2} is abelian.
(ii) Construct a non abelian group of order p^{3}.
7. Show that a countable product of \mathbb{Z} is not free. (Hint: Write A for the product of countable copies of \mathbb{Z}. If A is free then its rank must be \aleph_{1}. Let p be a prime. If A were free then $A / p A$ is a $\mathbb{Z} / p \mathbb{Z}$-vector space whose dimension is \aleph_{1}. For a nonzero integer k, let $v_{p}(k)$ be the maximal power of p which divides k and let $v_{p}(0)=\infty$. Let S be the subgroup of A defined by

$$
S=\left\{\left(a_{1}, a_{2}, \ldots\right) \in A \mid v_{p}\left(a_{i}\right) \rightarrow \infty \text { as } i \rightarrow \infty\right\}
$$

and let $x=\left(p, p^{2}, p^{3}, \ldots\right) \in A$. Then multiplication-by- x map is an isomorphism from A to S. Hence if A were free of dimension \aleph_{1} then $S / p S$ is a $\mathbb{Z} / p \mathbb{Z}$-vector space of dimension \aleph_{1}. But $S / p S$ is generated, as a $\mathbb{Z} / p \mathbb{Z}$-vector space, by the family $\left\{e_{i}\right\}_{i=1}^{\infty}$ whose i-th coordinate is 1 and zero elsewhere.)
8. Every finite group has a composition series.
9. Let G be a finite group and p be a prime. If every subgroup of G has an index divisible by p then G is a p-group.
10. Let G be a group order $p^{n} m$ where $(m, p)=1$.
(i) There is a subgroup of G of order $p^{i}(1 \leq i \leq n)$.
(ii) A subgroup of order p^{i} is normal in some subgroup of order p^{i+1}.
11. Answer the following questions.
(i) Find all 2-Sylow subgroups of in \mathfrak{S}_{4}. To which groups are they isomorphic?
(ii) Find 2-Sylow subgroups of \mathfrak{S}_{5}. Show one of them is isomorphic to D_{4}. What is the center of D_{4} ?
12. Prove:
(i) If there is an exact sequence

$$
(0) \longrightarrow A \longrightarrow G \longrightarrow H \longrightarrow(e)
$$

where A is abelian and H is nilpotent, then G is nilpotent.
(ii) A product of nilpotent groups is nilpotent.
13. Show that \mathfrak{S}_{3} is solvable but not nilpotent.
14. A subgroup H of G is called characteristic if $\sigma(H) \subseteq H$ for all $\sigma \in \operatorname{Aut}(G)$. Show that a characteristic subgroup is normal. Show that $D^{i}(G)$ and $C^{i}(G)$ are characteristic subgroups.
15. If G is a finite nilpotent group of order n and $m \mid n$ then G has a subgroup of order m.
16. If N and H are normal nilpotent subgroup of G then $H N$ is also normal nilpotent.
17. The dihedral group D_{n} is nilpotent if and only if n is a power of 2 .
18. Let H be a subgroup of a finite group G. If $[G: H]$ is the smallest prime p dividing the order of G, then H is normal in G. (Hint: Let G act on G / H by left translation to get a map $f: G \rightarrow \mathfrak{S}_{p}(=$ the permutation group on the left cosets of $H)$. Show that $\operatorname{Ker}(f)=H$.)
19. Prove the following statements.
(i) The quotient $G /[G, G]$ is abelian and if N is a normal subgroup of G such that G / N is normal then $[G, G] \subseteq N$. That is $G /[G, G]$ is the largest abelian quotient of G.
(ii) Let G be a group and H be a subgroup of G and N be a normal subgroup of G. Let $f: G \rightarrow G / N$ be the canonical map. Then $f(H)$ is contained in the center of G / N if and only if $[G, H]$ is contained in N.
20. The Frattini group $\Phi(G)$ of G is defined to be the intersection of all maximal subgroups. If G is finite then $\Phi(G)$ is nilpotent.
21. Let F be a field.
(i) The group G consisting of all matrices of the form

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right], \quad a, b, c \in F
$$

is a nilpotent group. Can you generalize this fact ?
(ii) Let G be the group of all the matrices of the form

$$
\left[\begin{array}{cc}
a & c \\
0 & b
\end{array}\right], \quad a, b, c \in F, a b \neq 0
$$

is a solvable group. Can you generalize this? Is this nilpotent?
22 . For $n \geq 5, \mathfrak{S}_{n}$ is not solvable.
23. The dihedral group D_{n} is solvable.
24. Let S and T be solvable subgroups of G. If S is normal in G then $S T$ is a solvable subgroup of G.
25. Any group of order $p^{2} q$ where p, q are primes is solvable.
26. If G is nonabelian group of order p^{3} (p is a prime) then $Z(G)=[G: G]$.
27. Any group of order ≤ 60 is of prime order or has a nontrivial normal subgroup.
28. A finite group G is called supersolvable if there is a composition series

$$
G=G_{1} \supseteq G_{2} \supseteq \cdots \supseteq G_{n}=(e)
$$

consisting of normal subgroups of G such that G_{i} / G_{i+1} is cyclic.
(i) Every subgroup, every quotient and a finite product of supersolvable group is supersolvable.
(ii) Show: nilpotent \Rightarrow supersolvable \Rightarrow solvable.
(iii) The alternating group A_{4} is solvable but not supersolvable. Find an example which is supersolvable but not nilpotent.
(iv) If G is supersolvable the $[G, G]$ is nilpotent.
(v) If G has a cyclic subgroups A, B such that $G=A \cdot B=B \cdot A$ then G is supersolvable.

[^0]: ${ }^{\dagger}$ Some authors say this is an extension of G_{1} by G_{3} and the others say this is an extension of G_{3} by G_{1}. We will try not to use these terminologies.

[^1]: ${ }^{\dagger}$ Usual notation for the ring of p-adic integers is \mathbb{Z}_{p} but we reserve it for a localization (3.2.4).

