Drawing a surface in \mathbb{L}^{3}

Young Wook Kim

Nov., 2004

This paper is to introduce a known method of drawing minimal surfaces in \mathbb{E}^{3} and show how to use it to find and draw a family of maximal surfaces in the Minkowski space \mathbb{L}^{3}.

1 Maximal surfaces in \mathbb{E}^{3}

The following table is a list of maximal surfaces in \mathbb{L}^{3}.

Surfaces	Riemann Surface \boldsymbol{M}	$\boldsymbol{f} \boldsymbol{d} \boldsymbol{z}$	\boldsymbol{g}
catenoid	$\mathbb{S}^{2} \backslash\{0, \infty\}$	$\frac{1}{z^{2}} d z$	z
helicoid	$\mathbb{S}^{2} \backslash\{0, \infty\}$	$\frac{i}{z^{2}} d z$	z
Enneper's surface	\mathbb{C}	$d z$	z
Trinoid	$\mathbb{S}^{2} \backslash\left\{1, e^{2 \pi i / 3}, e^{4 \pi i / 3}\right\}$	$\frac{1}{\left(z^{3}-1\right)^{2}} d z$	z^{2}
Costa's surface	$?$	$?$	$?$

Table 1: A table
Minkowski space-time \mathbb{L}^{3} is $\mathbb{R}^{3}=\{(x, y, t)\}$ with pseudo-riemannian metric $d x^{2}+d y^{2}-d t^{2}$. Let M be a Riemann surface, and $f, g: M \rightarrow \mathbb{C}$ be analytic functions. Then, the Weierstrass-type formula

$$
\operatorname{Re}\left\{\int_{z_{0}}^{z}\left(\left(1+g(w)^{2}\right) f(w), \boldsymbol{i}\left(1-g(w)^{2}\right) f(w), 2 g(w) f(w)\right) d w\right\}
$$

Figure 1: A figure
defines a space-like maximal immersion into \mathbb{L}^{3}.
For the periods of other components we have
Lemma 1. The period around γ for the $x y$-components are 0 iff

$$
\sigma=\sqrt{\frac{1}{2} \frac{A}{B}}
$$

2 The Surface

We render the surface graphics using a 3D plotting function in Mathematica and we see the surface as above. (Figure 2) ${ }^{1}$

3 Final remarks

This gives a new surface which is in close relation with the Costa-HoffmanMeeks minimal surface[1].

References

[1] Hoffman, D. and W. H. Meeks, III, Embedded minimal surfaces of finite topology, Ann. of Math. 131 (1990), 1-34.

[^0]
[^0]: ${ }^{1}$ The figure number is not correct here.

