Drawing a surface in \mathbb{L}^3

Young Wook Kim

Nov., 2004

This paper is to introduce a known method of drawing minimal surfaces in \mathbb{E}^3 and show how to use it to find and draw a family of maximal surfaces in the Minkowski space \mathbb{L}^3 .

1 Maximal surfaces in \mathbb{E}^3

The following table is a list of maximal surfaces in $\mathbb{L}^3.$

Surfaces	Riemann Surface M	fdz	g
catenoid	$\mathbb{S}^2\smallsetminus\{0,\infty\}$	$\frac{1}{z^2} dz$	z
helicoid	$\mathbb{S}^2 \smallsetminus \{0,\infty\}$	$\frac{i}{z^2} dz$	z
Enneper's surface	C	dz	z
Trinoid	$\mathbb{S}^2 \smallsetminus \{1, e^{2\pi i/3}, e^{4\pi i/3}\}$	$\frac{1}{(z^3-1)^2}dz$	z^2
Costa's surface	?	?	?

Table 1: A table

Minkowski space-time \mathbb{L}^3 is $\mathbb{R}^3 = \{(x, y, t)\}$ with pseudo-riemannian metric $dx^2 + dy^2 - dt^2$. Let M be a Riemann surface, and $f, g: M \to \mathbb{C}$ be analytic functions. Then, the Weierstrass-type formula

$$Re\left\{\int_{z_0}^{z} \left((1+g(w)^2)f(w), i(1-g(w)^2)f(w), 2g(w)f(w)\right) dw\right\}$$

Figure 1: A figure

defines a space-like maximal immersion into \mathbb{L}^3 .

For the periods of other components we have

Lemma 1. The period around γ for the xy-components are 0 iff

$$\sigma = \sqrt{\frac{1}{2}\frac{A}{B}}.$$

2 The Surface

We render the surface graphics using a 3D plotting function in Mathematica and we see the surface as above. (Figure 2)¹

3 Final remarks

This gives a new surface which is in close relation with the Costa-Hoffman-Meeks minimal surface[1].

References

 Hoffman, D. and W. H. Meeks, III, Embedded minimal surfaces of finite topology, Ann. of Math. 131 (1990), 1–34.

¹The figure number is not correct here.