
Sungmin Cho
Solution Manual for VLSI CAD

October 8, 2006

Problem 1

(a) Encode the circuit as a SAT problem
As written in Larrabee’s paper[2], one can transform a circuit element to a boolean equation(CNF
form) using the idea that P = Q is expressed as (P→ Q) · (Q→ P).

Logic Input Output Expression
AND X,Y Z (Z + X) · (Z + Y) · (X + Y + Z)

NAND X,Y Z (Z + X) · (Z + Y) · (X + Y + Z)
OR X,Y Z (Z + X) · (Z + Y) · (Z + X + Y)

XOR X,Y Z (X + Y + Z) · (X + Y + Z) · (X + Y + Z) · (X + Y + Z)
NOT X Z (X + Z) · (X + Z)

Table 1: Translating Formulas into CNF

NOT

AND

NAND
OR

NAND
OR

A

B
C

D
E

F

G

H

I

J

K

L

Figure 1: Original circuit

Using Table 1, the original circuit in Figure 1 is expressed as follows

res =(L + J) · (L + K) · (L + J + K)·

(J + G) · (J +H) · (J + G +H)·

(K + I) · (K + F) · (K + I + F)·

(G + A) · (G + A)·

(H + B) · (H · C) · (B + C +H)

(I +D) · (I + E) · (I +D + E)·

NOT

AND

NAND
OR

NAND
OR

A

B
C

D
E

F

G

H

I

J

K'

L'

I'I-

Figure 2: Fault circuit

(b) Fault circuit

res =(L′ + J) · (L + K′) · (L + J + K′)·

(K′ + I′) · (K′ + F) · (K′ + I′ + F)·
(I′)·

(J + G) · (J +H) · (J + G +H)·

(G + A) · (G + A)·

(H + B) · (H · C) · (B + C +H)

(I +D) · (I + E) · (I +D + E)·

(c) Find a test input that exhibits the fault
Find a test vector is the same as finding a vector that satisfies a CNF formula of Figure 3.

And the formula is as follows.

res =(L′ + J) · (L + K′) · (L + J + K′)·

(K′ + I′) · (K′ + F) · (K′ + I′ + F)·
(I′)·

(J + G) · (J +H) · (J + G +H)·

(K + I) · (K + F) · (K + I + F)·

(J + G) · (J +H) · (J + G +H)·

(G + A) · (G + A)·

(H + B) · (H · C) · (B + C +H)

(I +D) · (I + E) · (I +D + E)·

(L + L′ + Z) · (L + L′ + Z) · (L + L′ + Z) · (L + L′ + Z)

• Activate - For the stuck 1 value, make an input that generates the reverse of that value. So
D and E should be 1.

2

NOT

AND

NAND
OR

NAND
OR

A

B
C

D
E

F

G

H

I

J

K

L

NOT

AND

NAND
OR

NAND
OR

A

B
C

D
E

F

G

H

I

J'

K'

L'

XOR

I'

Z

Figure 3: Fault circuit

• Propagate and Justify - For the error to propagate, give 1 input to the AND gate and 0 to
the OR gate.

Using this method the test vector has three patterns. There are three patterns because there
are 3 ways to make J equals 1.

A B C D E F
1 X X 1 1 1
X 0 X 1 1 1
X X 0 1 1 1

Table 2: Test patterns

There are two main ways to solve the SAT problems([1]).

• Resolvent Algorithm.

• Search Based Algorithm.

Resolvent algorithm uses unate variable rule and binate variable rule. By applying those rules
the SAT equation can be simplified to find values that evaluate the equation to 1.

Search Based Algorithm enumerates all input assignments to evaluate them to decide whether
a formula is satisfiable.

Problem 2

(a) Draw retiming graph and compute W and D matrices
Figure 4 shows the graph of the circuit.

Using this graph D(delay) matrix is in Table 3.
And W(weight) matrix is in Table 4.

3

A(3)

E(3)
D(2)

B(5)

C(4)1

0

0
1

0

1
2

Figure 4: Retiming graph

A B C D E
A 3 8 17 14 17
B 10 5 14 11 14
C 9 14 4 6 9
D 5 10 14 2 5
E 12 17 7 9 3

Table 3: D matrix

A B C D E
A 0 1 1 1 1
B 2 0 0 1 1
C 3 4 0 1 1
D 2 3 3 0 0
E 4 5 1 2 0

Table 4: W matrix

4

(b) Minimum clock cycle
Before retiming path B→ D→ E is the critical path with delay 10.

(c) Is retiming is possible with a clock period of 5?
In order to retiming one should build constraints out of delay matrix. Out of D matrix components,
the value that exceeds 5 should be selected to make a contraint.

A B C D E
A 3 8 17 14 17
B 10 5 14 11 14
C 9 14 4 6 9
D 5 10 14 2 5
E 12 17 7 9 3

Table 5: Components in D matrix that is more than 5 delays

And the constraint is expressed as r(u) − r(v) ≤W(u, v) − 1.
So, the constraint inequalities are as follows.

r(A) − r(B) ≤ 0
r(A) − r(C) ≤ 0
r(A) − r(D) ≤ 0
r(A) − r(E) ≤ 0
r(B) − r(A) ≤ 1
r(B) − r(C) ≤ −1
r(B) − r(D) ≤ 0
r(B) − r(E) ≤ 0
r(C) − r(A) ≤ 2
r(C) − r(B) ≤ 3
r(C) − r(D) ≤ −1
r(C) − r(E) ≤ 0
r(D) − r(B) ≤ 2
r(D) − r(C) ≤ 2
r(E) − r(A) ≤ 3
r(E) − r(B) ≤ 4
r(E) − r(C) ≤ 0
r(E) − r(D) ≤ 1

Out of these constraint sets, we can make another graph. For example, r(A) − r(B) ≤ 0
can be expressed as Figure 5

A B0

Figure 5: Constraint expressed in graph

5

By using this relation, the whole graph is Fig 6.

A

B

C

D

E

0

0

0

0

1

-1

0

0

3

2
-1

0

2

2

0

4

1

3

Figure 6: Constraint graph

Finally, using Bellman-Ford algorithm, one can solve this problem to find out how the reg-
isters are moved. I implemented a Bellman-Ford algorithm to solve this problem using Python
programming language. The source code is listed in page 20.

Using the BF solver the result is in Table 11.

r(A) r(B) r(C) r(D) r(E)
0 1 2 3 2

Table 6: Result from BF solver

Problem 3

(a) Make BDD for 2 bit comparator
Table 7 shows the truth table for 2 bit comparator of b > a. Figure 7 shows BDD if ordered
a1 < b1 < a0 < b0 and its simplification. The number of non-terminal is 5. Figure 8 shows BDD if
ordered a1 < a0 < b1 < b0 and its simplification. The number of non-terminal is 9. In both cases,
the dotted line implies 0 and solid line implies 1.

(b) BDD for n bit comparator
As one can see by rearranging the Table 7 into Table 8, If the sequence is ordered an−1 < bn−1 <
· · · < a0 < b0. The 0’s and 1’s are collected in one parts so that the resulting BDD can be simplified.
It is because the MSB is compared first, so the LSB’s are always 0 if MSB of b is smaller than that
of a and vice versa. So the circuit grows in linear fashion.

But if the sequence is ordered as an−1 < an−2 < · · · < b1 < b0, the bits are shuffled so that the
circuit cannot be simplified. So the circuit grows in exponential fashion.

(c) Implement XOR with BDD
The equation is x ⊕ y = ITE(x, y′, y) because of the relation x ⊕ y = x · y′ + x′ · y and ITE(f , x, y) =
x · f + x′ · y. So only 1 ITE operation is needed to construct XOR function.

6

a1 a0 b1 b0 out
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 7: Truth Table for 2bit Comparator

b1

a0 a0

b0 b0b0b0

0 1 0 0 1 1 1 1

b1

a0 a0

b0 b0b0b0

0 0 0 0 0 1 0 0

a1

(a) BDD

a0

0

b1 b1

a0

b0

1

(b) simplified BDD

Figure 7: 2 bit comparator BDD and its simplification - case1

7

a0

b1 b1

b0 b0b0b0

0 1 0 0 1 1 1 1

a0

b1 b1

b0 b0b0b0

0 0 0 0 0 1 0 0

a1

(a) BDD

a0

1

a0 a0

b1

b0

0

b1b1b1

b0

(b) simplified BDD

Figure 8: 2 bit comparator BDD and its simplification - case2

a1 b1 a0 b0 out
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Table 8: Truth Table for 2bit Comparator when a and b are alternated

8

(d) Prove ITE decomposition
Let Z = ITE(f , g, h) and let x be the top variable of function f, g and h.

Z = x · Zx + x′ · Zx′

= x(f · g + f ′ · h)x + x′(f · g + f ′ · h)x′

= x(fx · gx + f ′x · hx) + x′(fx′ · gx′ + f ′x′ · hx′)
= ITE(x, ITE(fx, gx, hx), ITE(fx′ , gx′ , hx′))

So, ITE(f , g, h) = x · ITE(fx, gx, hx) + x′ · ITE(fx′ , gx′ , hx′)

Problem 4

(a) Write down δ for the state machine
The transition δ can be expressed as follows.

δ(a, b, c, d, x, a+, b+, c+, d+) = a b c d x a+ b+ c+ d+ +

a b c d x a+ b+ c+ d+ +

a b c d x a+ b+ c+ d++

a b c d 1 a+ b+ c+ d+ +

a b c d x a+ b+ c+ d+ +

a b c d 1 a+ b+ c+ d+

I tried to simplify the logic using Espresso, but this logic cannot be simplified further.
And the transition can be expressed in functional representation as follows.

Rk+1 = δ(Rk, x) (1)

The other way to express the transition is relational representation as follows.

T(Rk+1,Rk, x) =

1, Rk+1 = δ(Rk, x)
0, otherwise

(2)

(b) Deriving R1, R2 and so on
Using the expressions one can get the next state.

a+ = d
b+ = ax + bx
c+ = ax + c
d+ = bx

So the T can be expressed as follows.

T =(a, b, c, d, x, a+, b+, c+, d+)

(a+ ⊕ d)(b+ ⊕ (ax + bx))(c+ ⊕ (ax + c))(d+ ⊕ bx)

9

This equation checks, when there is a input x, if the result state is the same is expected. When
the state is R0 and the input is 0 the T is as follows.

R1 = T(1, 0, 0, 0, 0, a+, b+, c+, d+) = (a+ ⊕ 0)(b+ ⊕ 1)(c+ ⊕ 0)(d+ ⊕ 0)

This equation means that a+b+c+d+ equals 0100. Again one can use the same method to get the
R2. In this case input x is 1 to go to the other state.

R2 = T(0, 1, 0, 0, 1, a+, b+, c+, d+) = (a+ ⊕ 0)(b+ ⊕ 0)(c+ ⊕ 0)(d+ ⊕ 1)

(c) Working for VeriBackward
What the boss wants to express can be drawn by Figure 9 and Figure 10. As can be seen in the
9, one can progress from normal state to error state. It can be seen as desribed in Fig 10. That is,
from the error state, one can go to the next step on and on. And if the state includes the initial
state, the circuits are not equivalent.

With this method when we iterate the state, the state goes to the initial state which means
stop. And I can check whether R0 is contained in Em by using the following 1 sentence.

With Initial state I(s), and a fault state F(s), if (S · F) , 0, R0 is contained in Em.

initial
states ...

Reachable state

...

Uneachable(Error) state

R0
Rk

Rk+1

faulty state

E0
Ek

Ek+1

Figure 9: State Transition to Error State

Problem 5

(a) Find technology mapping
If one maps the logic gate to the circuit one by one, one can get the area of 15.0 as is seen in Table
9.

My algorithm for finding the best match is as follows.

10

initial
states ...

Reachable state

...

Uneachable(Error) state

R0
Rk

Rk+1

faulty state

E0
Ek

Ek+1

Figure 10: State Transition from Error State

NAND

NAND

AND

NAND

X

y
z

p
q

2.0

2.0

2.0

4.0

4.0

OR NOT

1.0

Figure 11: Result of the 1:1 mapping

Gate Size Number Total Size
NAND2 2.0 3 6.0
AND2 4.0 1 4.0
OR2 4.0 1 4.0
INV 1.0 1 1.0

15.0

Table 9: 1:1 mapping result

11

Step 1. Transform each library in NAND2 form.
Step 2. Transform each logic gate in NAND2 form and normalize.
Step 3. If there is a fan-out isolate the circuit
Step 4. Calculate the circuit
for each logic

loop
Mapping each circuit to minimize the area
Calculate at each step

end loop
end each circuit
Step 5. attach the isolated circuit to each circuit and go to for loop and recalculate
Step 6. If there is no not gate between the gate insert the 2 not gate and recalculate

Step1

For Step1 the library circuit should be transformed into orthogonal AND circuit. The transform
rule is shown in Figure 12.

NOT NAND

AND NAND NAND

OR NAND NAND

NAND

AND
AND

NAND

NAND

NAND
NAND NAND

AND
NOR

NAND

NAND

NAND NAND

OR
NAND

NAND

NAND

NAND NAND

Figure 12: Transform the library

Step2

For Step2 the input circuit is transformed into orthogonal AND circuit. The transformed result is
shown in Figure 13.

Step3

For Step3 If the circuit has fan-out separate the circuit. The transformed result is shown in Figure
14.

Step6

For Step6, if there is no circuit between the gates, insert 2 not gates to see if it is possible to
transform into AOI or OAI circuit. The transformed result is shown in Figure 15.

12

NAND NOT
NAND

NAND NOT

NAND

NOT

NOT

NAND

X

y
z

p
q

Figure 13: Transform the circuit
/Users/smcho/Desktop/2nd midterm exam/p5.tex

NAND NOT
NAND

NAND NOT

NAND

NOT

NOT

NAND

X

y
z

p
q

Figure 14: Remove the fan-out

NAND NOT
NAND

NAND NOT
NOT

NAND

NOT

NOT

NOT

NAND

X

y
z

p
q

Figure 15: Insert 2 not gates

13

NAND NOT
NAND

NAND NOT
NOT

NAND

NOT

NOT

NOT

NAND

X

y
z

p
q

2.0

4.5

4.5

1.0

2.0

Figure 16: Final result

Gate Size Number Total Size
AOI3 4.5 1 4.5
OAI3 4.5 1 4.5

NAND 2.0 2 4.0
NOT 1.0 1 1.0

14.0

Table 10: Final result

(b) Result
With the example circuit, after going through all the algorithm and compare the result, one can
get the following result. Mapped result is in Figure 16 and calculated size is in Table 10. In this
case, by inserting 2 not gates and separating the circuit into 3 parts, I can get the best result.

Problem 6

(a) Survey
Before solving the problem, it is necessary to see when those four cases occur. I used the book [4]
and [3] as a reference.

Blocked

NOT NOT

NOT

AND
OR

a

b

c d

e

y

z
0 1

Figure 17: Blocked path

The path is blocked when one of the gate in the path sends only 1 or 0. For example, if AND
gate has input 0, it always sends 0. And if OR gate has input 1, it sends 1 always. In both cases
the path is blocked. Figure 17 shows the path that is blocked. If b = 0 path b→ e→ z is blocked,
where as path a→ c→ d→ y becomes critical path.

Statically co-sensitizable

Consider a path P = (vx0, vx1, · · · , vxm), A vector is statically co-sensitizes a path to 1 (or to 0) if input
xm = 1 (or 0) and if vxm−1 has a controlling value whenever vxi has a controlled value.

As an example with Figure 18, Path a → d → g → o is statically co-sensitizable to 0 by input
a = 0, b = 0, c = 0. It is because the gates with controlled value(o, d) have a controlling input along
the path (g = 0, a = 0).

Statically sensitizable
Figure 19 shows a statically sensitizable path with test vector b = 1, c = 1, d = 1. The algorithm for
finding test vector is as follows. Actually, it is same as ‘Fault propagation’ algorithm for finding

14

NOR

AND
OR

AND

a

b d

e

g

o

c

0

0

0

Figure 18: Statically co-sensitizable path

stuck-at error.

Step 1. Identify the path.
Step 2. Identify input vector.

Step 2-1. With AND gate, give 1 to make a path. Find vector to send 1 from the previous gate.
Step 2-2. With OR gate, give 0 to make a path. Find vector to send 0 from the previous gate.

At Figure 19, o is AND gate. So the input is 1. In order to send 1 from g, input vector should
be 1.

NOR

AND
OR

AND

a
b

d

e

g

o

d 1

1

c
1

Figure 19: Statically sensitizable path

HFRPDFT
Statically sensitizable circuit can be simplified with the following rule.

• With AND gate, if the input is 1, the gate becomes buffer.

• With OR gate, if the input is 0, the gate becomes buffer.

After simplification, if the path to the input gate has the same delay. We can identify the
path as HFRPDFT. Figure 20 shows 2 circuits after simplification. Circuit in upper part is not
HFRPDFT but circuit in lower part is HFRPDFT. The HFRPDFT path has 2 test vectors, the first
vector makes result 0 and the second vector makes the result 1.

(b) Identify each path

Path1,2,3,4,5

Figure 21 shows path 1,2,3,4,5 and its simplified circuit when input vector is d = 0 to propagate
the signal through the path. The five paths are blocked.

Path 6,7

Figure 22 shows path 6,7 when input vector is d = 0 to propagate the signal through the path.
The two paths are blocked.

15

AND

NOT NOT

NOT

A

AND

NOT NOT

NOT

A
NOT

Figure 20: After simplification

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

0

0

0

10

G1

G2

G11
G13

G15

A

B

PATH1
PATH2

PATH3
PATH4

SIMPLIFIED CIRCUIT

PATH5

Figure 21: Blocked path

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

0

0

0

10

PATH7

PATH6

Figure 22: Path 6,7

16

Path 8

Figure 23 shows path 8 and its simplified circuit when input vector is a = 0, b = 1, c = 0 to
propagate the signal through the path.

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

1

PATH 8

1

1

0

1

SIMPLIFIED CIRCUIT

0

1

D

1
1

1

1
0

0

0

0

G14

G15

G13
G8

G4

Figure 23: Path 8

Path 9

Figure 24 shows path 9 and its simplified circuit when input vector is b = 1, c = 1 to propagate
the signal through the path.

Path 10

Figure 25 shows path 10 and its simplified circuit when input vector is a = 0, b = 0, d = 1 to propa-
gate the signal through the path. This path is HFRPDFT with test vector < (0, 0, 0, 1), (0, 0, 1, 1) >.

Path 11

Figure 26 shows path 11 and its simplified circuit when input vector is a = 0, b = 1, d = 1 to
propagate the signal through the path.

Path 12

Figure 27 shows path 12 and its simplified circuit when input vector is a = 1, c = 0, d = 1 to propa-
gate the signal through the path. This path is HFRPDFT with test vector < (1, 0, 0, 1), (1, 1, 0, 1) >.

Path 13

Figure 28 shows path 13 and its simplified circuit when input vector is a = 0, b = 1, d = 0 to
propagate the signal through the path.

(c) Result
Table 11 shows the identified path.

17

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

1

PATH 9 1

1

1

1

0

1

1

SIMPLIFIED CIRCUIT

1

1

A

1
1

1

1

G5
G9

G12
G14

G15

G3
G8

G13

Figure 24: Path 9

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

1

PATH10

1

1

0

1
1

0

1

1

0

SIMPLIFIED CIRCUIT

1

1

0

0

C

0
1

G9
G12

G14
G15

Figure 25: Path 10

Path Condition Test Vector
1,2,3,4,5,6,7 Blocked
8, 9,11,13 Statically sesitizable

10 HFRPDFT < (0, 0, 0, 1), (0, 0, 1, 1) >
12 HFRPDFT < (1, 0, 0, 1), (1, 1, 0, 1) >

Table 11: Result

18

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

1

PATH11

1

1

0

1
1

0

1

1

0

SIMPLIFIED CIRCUIT

1

1

0

0

G6
G10

G9

G12
G14

G15

C

Figure 26: Path 11

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

0

1

PATH12

1

1

1

1
1

0

1

0

1

SIMPLIFIED CIRCUIT
B

1

0

G10
G12

G14
G15

Figure 27: Path 12

19

G7

G11

D

G3
G8

G13

G15

G4

G5
G9

G6
G10

G12

A

B
D

A

C

B

D

G14

G1

G2

A
B

A
B

0

1

PATH13

1 1

1

1

0 1

0 0

0

1

1

0

G4
G8

G13
G15

G14

SIMPLIFIED CIRCUIT
D

Figure 28: Path 13

A. Bellman-Ford algorithm implementation
1 # maxpath BIG <
2 # minpath SMALL >
3 INF = 400000
4 class Vertex:
5 def init (self, number):
6 self.number = number ;
7 self.list = []
8 def add(self, edge):
9 self.list.append(edge);
10 def printme(self):
11 print "-------------------\n";
12 for edge in self.list:
13 edge.printme();
14 print "-------------------\n";
15

16 class VertexList:
17 def init (self):
18 self.list = {}
19 def add(self, name, vertext):
20 self.list[name] = vertext;
21 def length(self):
22 return len(self.list);
23 def getitem (self, name):
24 return self.list[name];
25

26 class Edge:
27 def init (self, start, stop, weight):
28 self.start = start;
29 self.stop = stop;

20

30 self.weight = weight;
31 def printme(self):
32 print "START:%d STOP:%d - WEIGHT:%d\n"% (self.start, self.stop, self.
33 weight);
34

35 def BF(vertexList):
36 number = vertexList .length();
37 distance = {}
38

39 # initialize

40 for x in range(number):
41 distance[x] = INF ;
42 distance[0] = 0;
43 count = 0;
44

45 # First

46 v = vertexList [’v0’];
47 S1 = []; S1.append(v);
48 S2 = [];
49

50 while (count <= number and len(S1) > 0):
51 # Get every vertex

52 for vertex in S1:
53 # get every edge connected with the vertex

54 for edge in vertex.list:
55 vj = "v%d"% edge.stop;
56 if (distance[edge.stop] > distance[edge.start] + edge.weight):
57 distance[edge.stop] = distance[edge.start] + edge.weight;
58 S2.append(vertexList [vj])
59

60 S1 = S2;
61 S2 = []
62 count += 1
63 printlist(distance);
64 print("\n");
65

66 if (count > number):
67 print("ERROR: Positive cycle");
68

69 return distance
70

71 def printlist(list):
72 val = "";
73 for i in list :
74 val = "%s %d"% (val,list [i])
75 print val
76

77 if name == " main ":
78 # Edge

79 e1 = Edge(1,0,0);
80 e2 = Edge(2,0,0);
81 e3 = Edge(3,0,0);
82 e4 = Edge(4,0,0);
83

21

84 e5 = Edge(0,1,1);
85 e6 = Edge(2,1,-1);
86 e7 = Edge(3,1,0);
87 e8 = Edge(4,1,0);
88

89 e9 = Edge(0,2,2);
90 e10 = Edge(1,2,3);
91 e11 = Edge(3,2,-1);
92 e12 = Edge(4,2,0);
93

94 e13 = Edge(1,3,2);
95 e14 = Edge(2,3,2);
96

97 e15 = Edge(0,4,3);
98 e16 = Edge(1,4,4);
99 e17 = Edge(2,4,0);
100 e18 = Edge(3,4,1);
101

102 # Vertex

103 v0 = Vertex(0); #A
104 v0.add(e5); v0.add(e9);v0.add(e15);
105 v1 = Vertex(1); #B
106 v1.add(e1); v1.add(e10); v1.add(e13); v1.add(e16);
107 v2 = Vertex(2); #C
108 v2.add(e2); v2.add(e6); v2.add(e14); v2.add(e17);
109 v3 = Vertex(3); #D
110 v3.add(e3); v3.add(e7); v3.add(e11); v3.add(e18);
111 v4 = Vertex(4); #E
112 v4.add(e4); v4.add(e8); v4.add(e12);
113

114 vlist = VertexList();
115 vlist.add(’v0’,v0);
116 vlist.add(’v1’,v1);
117 vlist.add(’v2’,v2);
118 vlist.add(’v3’,v3);
119 vlist.add(’v4’,v4);
120

121 res = BF(vlist);
122 print(res);

22

References
[1] William K. Lam, Hardware design verification, 1 ed., Prentice Hall Modern Semiconductor

Design Series, Prentice Hall, 2005.

[2] Tracy Larrabee, Test pattern generation using boolean satisfiability, IEEE Trans. Computer-Aided
Design II (1992), no. No. 1, 4 – 15.

[3] Giovanni De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, 1994.

[4] Kurt Keutzer Srinivas Devadas, Abhijit Ghosh, Logic synthesis, McGraw-Hill Series on Com-
puter Engineering, McGraw-Hill, 1994.

23

