Matlab Code Analysis

Sungmin Cho
May 3, 2006
Contents
Contents 1
1 readpanelm . . ... ... ... ... .. .. ... . . 2
1.1 Dataformat . . . ... ... ... ... ... .. . ..., 2
1.2 Code Analysis. . . ... ... ... .. .. ... ... 3
2 readpanelsm ... ... ... o 8
3 plotpanelsm . . .. ... L L 10
4 calepm . .. 12
4.1 Code Analysis. . . ... ... ... .. ... ... ... 12
5 calccapm . . ... 23
6 collocation.m . . . . . . . . . ... 25
7 Listofcodechunks . ... ... ... ... ... . ... ... ..., 26
8 Index . . . . . . . e 27



O A W N =

1 readpanel.m
1.1 Data format
There are two kinds of ‘qif’ file format.

e Q(Quadrature) format

e T(Trianglular) format

Q format

Q format is a format for plate shape, which comprises of four points to repre-
sent one rectangle.

Q SIZE VAL1 VAL2 ... VALI2

The line that starts without ‘Q’ is ignored. There are 12 numbers in one
line, the three numbers builds one point as in (X, Y, Z), so there are four points
in one line. So each line represents one plate(rectangle).

Following is an example of Q format file.

0 ImX1m single plate capacitor with 0.1m separation (n=3 e=1)

Q 1 6.66667e-01 6.66667e-01 ... 0.0e+00 6.66667e-01 1.0e+00 0.0e+00

Q 1 6.66667e-01 6.66667e-01 ... 0.0e+00 6.66667e-01 1.0e+00 0.0e+00
T format

T format is a format for triangular shape, which comprises of three points to
represent one rectangle.

T SIZE VAL1 VAL2 ... VAL9 AB C

There are 9 numbers in a line, so those three points represent one triangular
shape.
There are three mover values for the representation.

A Potential

dPotential
B dn



AW N =

C Type

Following is an example of T format file.

0 grid generated by mksphere -- 48 panels normal points outward
T 1 -0.000000 -0.0 1.0 ... -0.0 -0.7 0.7 0.0 0.0 0
T1-0.707107 -0.0 0.7 ... -0.0 -0.0 1.0 0.0 0.0 0

1.2 Code Analysis

The function readpanel reads a panel from the source file readpanel reads one
line in Q or T formmat and transform the line into a new data structure. And
append the data structure at the “List’. “panelsize’is 4 for Q format and 3 form
T format.

(readpanel 3)=
function [List] = readpanel(line,List,panelsize)
% Reads a panel with vertices as floating point numbers on a line
% Input
% line <- line to be parsed, Q or T format
% List <- Internal data structure
% panelsize <- 3 for T format, 4 for Q format
(scan the line 4a)
(Check if the line is Q format or T format 4b)
(Check the size of the list 5)
(Fill out the list 6a)
(Fill out the list for T format 6b)
(Fill out the values 7)
Defines:
readpanel, never used.
To scan the line Matlab function sscanf is used. As a return ‘stuff’ stores
ever value from the scanned result and ‘cnt” stores the number of values that
is read into the ‘stuff’. Following is the example of sscanf function.

> x="123";

>> [a,b] = sscanf(x,’%d %d %d’);
>> a

a =

= W N e

)

>> a(
ans =

>> b



4a {scan the line 4a)= (3)
[stuff,cnt]=sscanf(line,’%s %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f’);

As ‘panelsize’ is 4 for Q format and 3 for T format, the ‘cnt’ value can be
used to check if the format is right or wrong.

4b  (Check if the line is Q format or T format 4b)= (3)
% Check if Q or T format is OK.
if (cnt == (2 + panelsize * 3))
fastcap = 1;

fastlap = 0;

elseif (cnt == (2 + 3 + panelsize * 3))
fastcap = 0;
fastlap = 1;

else
disp(’Format error in panel!’);
return;

end



‘List’ is a 3 dimensional matrix. The first two elements are ‘row’ and
‘column’ of the panel, and the last element is the index of the panel. The first
row and the first column has the information of how many points the data
has. For the Q format, it is 4, and for the T format, it is 3.

Following is an example of ‘List” data structure of Q format with 3 data
elements.

ans(:,:,1) =
4.0000 1.0000 0
0 0 0
0.3333 0 0
0.3333 0.3333 0
0 0.3333 0
ans(:,:,2) =
4.0000 1.0000 0
0 0.3333 0
0.3333 0.3333 0
0.3333 0.6667 0
0 0.6667 0

Following is an example of ‘List” data structure of Q format with 3 data
elements.

panels(:,:,1) =
3.0000 1.0000 0
0 0 1.0000
-0.5774 -0.5774 0.5774
0 -0.7071 0.7071
0 0 0

panels(:,:,2)

3.0000 1.0000 0
0 -0.7071 0.7071
0.5774 -0.5774 0.5774
0 0 1.0000
0 0 0
5 (Check the size of the list 5)= (3)

[rows,cols,numpanels] = size(List);



The first row of the new data is the information of the panel. The first
column is panelsize(4 for Q format, 3 for T format), the second column is
‘stuff(2)’, which is the second element of the each line in the file. If the following
example is read, ‘1’ is the ‘stuff(2)’.

Q1 6.66667e-01 6.66667e-01 ... 0.0e+00 6.66667e-01 1.0e+00 0.0e+00

6a (Fill out the list 6a)= (3)
% Add one data structuer
numpanels = numpanels +1;
List(1l,1,numpanels) = panelsize;
List(1l,2,numpanels) = stuff(2);
List(1l,3,numpanels) 0;

If the data is T format, the final three data should be stored in the last

column.
panels(:,:,1) =
3.0000 1.0000 0 <-- fastlap == 1, T format
0 0 1.0000
-0.5774 -0.5774 0.5774
0 -0.7071 0.7071
0 0 0 <-- panelsize + 2 = 5
6b (Fill out the list for T format 6b)= (3)
% fastlap == 1 means T format

% panelsize + 2 is always 5

if(fastlap == 1)
List(panelsize+2,1,numpanels) = stuff(cnt - 2); % Potential
List(panelsize+2,2,numpanels) stuff(ent - 1); % d/dn Potential
List(panelsize+2,3,numpanels) stuff(cnt); % Type

end;



Now all we have to do is just fill the data.

7 (Fill out the values 7)= (3)
% stuff(index <- 3) is where the data starts.
index = 3;
for i=2:panelsize+l
for j=1:3

List(i,j,numpanels) = stuff(index);
index = index + 1;
end
end



2 readpanels.m

readpanels reads from a file T or Q format data line by line using the function
readpanel

8a (readpanels 8a)=
function [panels] = readpanels(file)
% Read the file, line by line, and dispatch based on first character on line.
% Panel type, cond number, x1, yl1, zl, x2, y2, z2, ... Xn, yn, zn
% Panel type:
% Q means quadralateral
% T means triangle
% 0 or # or * means a comment
% Conductor number:
% An integer indicting a conductor number.
% Panel is stored as 3-D array
% [panel verts, cond num, 0]
% [vert 1 x,y,z]
% [vert 2 x,y,z]
% [vert 3 x,y,z]
%
% [vert n x,y,z]
% [potential, d/dn potential, type]
(set dummy 8b)
(file read 9a)
(remove dummy 9d)

Defines:
readpanels, never used.

Initialization code puts a dummy data in front of the first data. This is
necessary for setting and initializing the 3D data.
8b (set dummy 8b)= (8a)
panels(1,1,1) = 0.0;



Open the file and read the file line by line.

9a (file read 9a)= (8a)
fid = fopen(file, ’'r’);
while 1
line = fgetl(fid);
% Break condition - no character (EOF)
if "ischar(line), break, end
if length(line) "= 0,
if (strcmp(line(1),’Q’) > 0) | (strcmp(line(l),’q’) > 0)

(read Q format 9b)

elseif(strcmp(line(1),’T’) > 0) | (strcmp(line(1),’t’) > ®)
(read T format 9c)

% if the value is not ’0’,’#’,’*’, error

elseif((strcmp(line(1),’0’) == 0) & (strcmp(line(1),’#’) == 0) & (strcmp(line(1),’*’)
’syntax error in input file’
line
end
end
end

Reading Q and T format is same, the only difference is the last parameter.

9b (read Q format 9b)= (9a)
panels = readpanel(line, panels, 4);

9c (read T format 9c)= (9a)
panels = readpanel(line, panels, 3);

Now panels have the every information in 3D format. Finally, get rid of
the dummy header panel.!

9d (remove dummy 9d)= (8a)
% Get read of the dummy header panel.
[r,c,numpanels] = size(panels);
panels = panels(:,:,2:numpanels);

1) I think it’s a clever idea to use a dummy data.

9



3 plotpanels.m

10a (plotpanels 10a)=

function plotpanels(panels)

% PLOTPANELS: plot the panels.

%

% Usage: plotpanels(panels)

% Input - panels: 3D array of panel informations.
(get the size 10b)
{draw lines 10c)

Defines:
plotpanels, never used.

10b (get the size 10b)= (10a)
% Find the number of panels.
[row,column,num_panels]=size(panels);

The first row and first column of ‘panel” is the number of vertices in each
panel. Using this information as ‘num_verts’, one can get line information.

10c {draw lines 10c)= (10a)
figure(l), clf
for i=1:num_panels

% Find the number of vertices in the panels.
num_verts=panels(1,1,i);

% Extract the edges.
x=(getx 11a)

y=(gety 11b)

z=(getz 11c)

(draw a line 11d)

end

10



11a

11b

11c

11d

The vertice information of the panel starts at the second row and ends at
the ‘num_verts + 1’ row. Together with that, one should add the first value
again in order to draw the last line to the first line. The second parameter of

YA

‘panel’ indicates ‘x’,"y’, or ‘z’.

>> [panels(2:1+num_verts,1,i);panels(2,1,i)]
ans =
0.7071
0.5774
0
0.7071 <-- Repeats the first value

(getx 11a)= (10c)
[panels(2:1+num_verts,1,i); panels(2,1,i)];

(gety 11b)= (10¢)
[panels(2:14+num_verts,2,i); panels(2,2,i)];

(getz 11c)= (10¢)
[panels(2:1+num_verts,3,i); panels(2,3,i)];

The matlab function line, can draw vector X, vector y, and vector z. The
line selects x(1), y(1), and z(1) and x(2), y(2), and z(2) then draws a line. It
iterates over and over again until it reaches the final data.

(draw a line 11d)= (10c)
% Draw a panel.
line(x,y,2);

11



4 calcp.m

4.1 Code Analysis

12 {calep 12)=
function [area,centroid,Z,fss, fds, fess, feds] = calcp(panel,evalpnts,directions)
% Matlab version of calcp, returns potential at evaluation point due
% to unit monopole and unit dipole uniformly distributed on a panel.
% Follows a left-hand rule (Clockwise ordered points has normal
% pointing up).

% panel -- vectors of panel vertices in rows of x,y,z (3 or 4 rows supported).
% evalpnts -- matrix of evaluation points, rows of x,y,z coordinates
% directions -- matrix of derivative directions, rows of x,y,z coordinates

% fss = the vector of potentials due to a monopole

% fds = the vector of potentials due to a panel normal dipole distribution
% area = panel area.

% centroid = panel centroid.

% Z = panel normal.

% fess = the derivative of the monopole potential at evalpnt along direction
% fess = the derivative of the dipole potential at evalpnt along direction

(check the input 13a)
(check the arguments 13b)

(set sides 14b)
(calculate X,Y and Z 15)
(get the area 16a)
(normalize panel axies 16b)
(get the centroid points 17)
(check that panel is in the x-y panel 18a)
(Compute the contributions terms for each edge 18b)
% Done With the PANEL SETUP! | | | ! ! | | !7“::“:7’:*7‘::“::“:‘k:‘c7‘::‘::‘:7‘:7’:7‘::‘::‘:7‘:7’:7‘::‘::‘:7‘:7‘:7‘::‘:7’:7‘:7‘:7‘::‘:7’:*7‘:7‘:*

(Done with Setup, now loop through the evaluation points!! 19)

Uses area 16a, centroid 17, and Z 16b.

12



The ‘panel” has the data structure for Q format as follows.

0 0.3333
0.3333 0.3333
0.3333 0.6667

0 0.6667

(=B — I — ]

And T format as follows.

0 0 1.0000
-0.5774 -0.5774 0.5774
0 -0.7071 0.7071

13a (check the input 13a)= (12)
% First check the input.
[verts, betterbethree] = size(panel);

if betterbethree "= 3
'wrong panel format: should be rows of x,y,z vectors!’
return;

end

if (verts > 4) | (verts < 2)
'wrong panel format: panel can only have 3 or 4 vertices!’
return;

end

This is a clever trick for checking input arguments. If there is a argument,
the two code blocks are run. If there is only one argument, only the first block
is run.

13b (check the arguments 13b)= (12) 14a»
% If the number of input argument is ’1’
% Check evaluation points
if(nargin > 1)
[numevals, betterbethree] = size(evalpnts);

if betterbethree "= 3

'wrong evaluation point format: should be rows of x,y,z vectors!’

return;
end
else
numevals = 0;
end

13



14a {check the arguments 13b)+= (12) <13b

% If the number of input argument is 2
% Check directions
if (nargin > 2)
deriv = 1;
[numdirections, betterbethree] = size(directions);

if betterbethree "= 3
'wrong direction vector format: should be rows of x,y,z vectors!’
return;

end

if (numdirections "= 0) & (numdirections “= numevals)
‘number of direction vectors does not match number of evaluation points!’
return;
end
else
deriv = 0;
end
One can get sides and edgeLength by calculating panels. Figure 1 shows

how to do it.

14b (set sides 14b)= (12)

% Length of each side and the panel area.
for i=1l:verts
if(i < verts)
side(i,:) = panel(i+l,:) - panel(i,:);
else
% Final Value
side(i,:) = panel(l,:) - panel(i,:);
end
% edgelLength has the lenght of each sides.
edgeLength(i) = norm(side(i,:));
end

Defines:
edgeLength, used in chunks 18b and 19.
side, used in chunk 19.

Uses area 16a.

14



15

Figure 1: panels to get the X,Y, and Z

From the information in the panel, we can calculate X, Y and Z. The X is
the difference between first and third value. If verts is 3, that is, with the T
format, the Y is the difference between second and first value. With the Q
format (verts == 4), the Y is the difference between fourth and second.

The figure 1 shows the result.

The Z can be calculated using outer product, 7 = Xx Y. cross matlab
function is for making the vector.

(calculate X,Y and Z 15)= (12)
% Calculate the panel coordinate system.
X = panel(3,:) - panel(l,:);
diagLength = norm(X);
if(verts == 3)
Y = panel(2,:) - panel(l,:);
else
Y = panel(2,:) - panel(4,:);
end

% Z-axis is normal to two diags.
Z = cross(X, YV);

Defines:
diagLength, used in chunks 17 and 18a.

15



Uses X 16b, Y 16b, and Z 16b.

By calculating the length of the Z, one can calculate the area.”

16a (get the area 16a)= (12)
??? same rule for Q format and T format?
area = 0.5 * norm(Z);
Defines:
area, used in chunks 12, 14b, and 19.
Uses Z 16b.

Using the X,Y, and Z information, the new and normalized values can be
obtained. Unit vector X, Y, and Z can be obtained.

16b (normalize panel axies 16b)= (12)
% Normalize panel axises.
coord(3,:) = Z / norm(Z);
coord(l,:) = X / norm(X);
X = coord(l,:);

Z = coord(3,:);
coord(2,:) = cross(Z, X);
Y = coord(2,:);

Defines:
coord, used in chunks 17 and 22.
X, used in chunks 15 and 17.

Y, used in chunks 15 and 17.
Z, used in chunks 12, 15, and 16a.

16



vertex1

4
L
Xa ™~ «x

vertex3

>
(2)

vertex1

Figure 2: Getting centroid valule

With the information of unit vector X, Y, and Z, centroid values can be
obtained. Figure 2 shows the diagram to get the centroid value. 3
The figure 1 shows the result.

17 {(get the centroid points 17)= (12)
% Determine the centroid.
vertexl = panel(2,:) - panel(l,:);
if(verts == 4)
vertex3 = panel(4,:) - panel(l,:);
else
vertex3 = panel(3,:) - panel(l,:);
end

% Project into the panel axes.

yl = sum(vertexl .* Y);

y3 sum(vertex3 .* Y);

x1 sum(vertexl .* X);

x3 = sum(vertex3 .* X);

% y and z are orthogonal, so the third value is 0.

yc = (y1 + y3 + 0)/3.0;

% ??? don’t understand this part.

xc = (diagLength + ((x1 * y1 - x3 * y3)/(yl - v¥3)))/3.0;

2) T format works, but I think Q format doesn’t work.
3) Needs more diagram.

17



% Compute the centroid.
centroid = panel(l,:) + xc * X + yc * Y;

% Put the corners in the newly defined coordinate system.
% 7?7 What’s the rule?
% It looks like that we have a new panel named ’npanel’
for i=1:verts

npanel(i,:) = (coord * (panel(i,:) - centroid).’).’;
end

Defines:
centroid, used in chunks 12 and 22.
npanel, used in chunks 18 and 19.
Uses coord 16b, diagLength 15, X 16b, and Y 16b.

18a {check that panel is in the x-y panel 18a)= (12)
% Check that panel is in the x-y panel.
for i=1:verts
if(abs(npanel(i,3)) > (1.0e-8 * diagLength))
"Coordinate transform failure!!’
npanel
return;
end;
end;
Uses diagLength 15 and npanel 17.

We have a new panel named ‘npanel’, with ‘npanel’, we can get ‘ct’ and
‘st’.
18b (Compute the contributions terms for each edge 18b)= (12)
% Compute the contributions terms for each edge.
for i=l:verts
if (i==verts)

next=1;
else
next=i+1;
end;
ct(i) = (npanel(next,1)-npanel(i,1))/edgelLength(i);
st(i) = (npanel (next,2)-npanel(i,2))/edgelLength(i);
end
Defines:

ct, used in chunk 19.
st, used in chunk 19.
Uses edgeLength 14b and npanel 17.

18



19 (Done with Setup, now loop through the evaluation points!! 19)= (12)
% Done with Setup, now loop through the evaluation points!!
for evalindex = 1:numevals

(Point eval pt in in new coordinate system and get the z-comp 22)
% Once per vertex computation
OK = 1;
for i=1:verts
xc=point (1) -npanel(i,1);
yc=point (2)-npanel(i,2);
zc=point (3)-npanel(i,3);
xmxv(i)=xc;
ymyv (i)=yc;
fe(i)=xc*xc+zc*zc;
r(i)=sqrt(yc*yc+fe(i));
if (r(i) < (1.005*znabs))
OK = 0;
end;
if(deriv == 1)
xri(i) = xmxv(i)/r(i);
yri(i) = ymyv(i)/r(i);
end;
end;

% The potential and dipole contributions are made by summing up
% a contribution from each edge
fs=0;
£d=0;
if(deriv == 1)
fsx = 0; fsy = 0;
fdx = 0; fdy = 0; fdz = 0;
end

for i=1:verts
if (i==verts)
next=1;
else
next=i+1;
end;
% v is the projection of the eval-i edge on the perpend to the side-i:
% Exploits the fact that corner points in panel coordinates.
v=xmxv(i)*st(i) - ymyv(i)*ct(i);

% arg == zero if eval on next-i edge, but then v = 0. %
arg=(r(i)+r(next)-edgelLength(i))/(r(i)+r(next)+edgelLength(i));
if(arg == 0)

’in calcp’

19



keyboard;
end
fln = -log(arg);
if (arg>0.0)
fs = fs + v * fln;
end;
if ( deriv == 1)
if ( arg > 0.0 )
fac (r(i)+r(next)-edgelLength(i)) * (r(i)+r(next)+edgelLength(i));
fac = v*(edgelLength(i)+ edgeLength(i))/fac;

fsx = fsx + (fln*st(i) - fac*(xri(i) + xri(next)));
fsy = fsy - (fIn*ct(i) + fac*(yri(i) + yri(next)));
fdz = fdz - (fac*( 1.0/r(i) + 1.0/r(next)));
end
end

% OK means eval not near a vertex normal, use Hess-Smith:
if (OK == 1)
sl=v*r(i);
cl=znabs* (zmxv (i) *ct (i)+ymyv(i)*st(i));
s2=v*r(next);
c2=znabs* (xmxv (next) *ct (i) +ymyv(next)*st(i));
else % Near a vertex normal, use Newman
sl=(fe(i)*st(i))-(xmxv(i)*ymyv(i)*ct(i));
cl=znabs*r(i)*ct(i);
s2=(fe(next) *st(i))- (xmxv(next) *ymyv(next)*ct(i));
c2=znabs*r(next)*ct(i);
end;

s12=(s1*c2)-(s2*cl);
cl12=(cl*c2)+(s1*s2);
val=atan2(sl12, cl2);
fd=fd+val;
if (deriv == 1)
ul = xmxv(i)*ct(i) + ymyv(i)*st(i);
u2 = xmxv(next)*ct(i)+ymyv(next)*st(i);
if (OK == 0) % Near a vertex normal.
rr =r(i)*r(i);
fhl = xmxv(i)*ymyv(i);
fh2 = xmxv(next)*ymyv(next);
fac = c1/((cl*cl+sl*sl)*rr );

if(zn < 0.0)
fac = -1.0 * fac;
end

fdx = fdx + ((rr*v+fhl*ul)*fac);
fdy = fdy - (fe(i)*ul*fac);

20



rr
fa

C =

if(zn

en
fd
fd

else

fa
fd
fd
fa
fd
fd

end

end;

end;

fac
d
X =
y:

C =
X =
y:
C =
X =
y:

if (£d<0.0)
fd = £fd +

end;

if (zn < ®)
fd=£fd*(-1

end;

fs=fs-zn*fd;

if(deriv ==

fsx
fsy
fes
fed
end

fsx
fsy

r(next) *r(next) ;
c2/((c2*c2+82*s2)*rr);
< 0.0)

= -1.0 * fac;

fdx - ((rr*v+fh2*u2)*fac);
fdy + fe(next)*u2*fac;

zn/(cl*cl+sl*sl);

fdx + (ul*v*xri(i)+r(i)*ymyv(i))*fac;

fdy + (ul*v*yri(i)-r(i)*xmxv(i))*fac;

zn/ (c2*c2+s2%*s2);

fdx - ((u2*v*xri(next)+r(next)*ymyv(next))*fac);
fdy - ((u2*v*yri(next)-r(next)*xmxv(next))*fac);

2%pi;

.0);

1)
- zn*fdx;
- zn*fdy;

nrm(1) *fsx + nrm(2)*fsy - nrm(3)*£d;
nrm(1l) *fdx + nrm(2)*fdy + nrm(3)*fdz;

% No area normalization!
fss(evalindex) = f£s;
fds(evalindex) = £d;
if(deriv == 1)

fess(evalindex) = fes;
feds(evalindex) = fed;
end;
end;

Uses area 16a, ct 18b, edgeLength 14b, npanel 17, side 14b, and st 18b.

21



22 (Point eval pt in in new coordinate system and get the z-comp 22)= (19)
% Point eval pt in in new coordinate system and get the z-comp.
point = (coord * ((evalpnts(evalindex,:) - centroid).’)).’;
if(deriv == 1)

nrm = (coord * directions(evalindex,:).’).’;
end
zn=point(3);
znabs=abs(zn) ;
evalDistance = norm(point);
Uses centroid 17 and coord 16b.

22



5 calccap.m

calccap calculates capacitance of the panels using collocation method.

23a {calccap 23a)=
function [Creal,matrix] = calccap(infile)
(set the constant 23b)
(Read in the panels 23c)
(Compute centroid, normals, and areas 23d)
(Generate the collocation matrix 23e)
(Generate RHS, MATRIX and solve them 23f)
(Integrate(Sum) to get the result 24)
Uses Creal 24.

23b (set the constant 23b)= (23a)
% Permitivity of free space.
E_® = 8.854187818E-12;

Defines:
E_0, used in chunk 24.

23c (Read in the panels 23c)= (23a)
% Read in the panels
[panels] = readpanels(infile);
done = ’read input file’

Use the gencolloc to calculate the centroids, normals, and areas.

23d  (Compute centroid, normals, and areas 23d)= (23a)
% Compute the panel centroids and areas (don’t need the normals).
[centroids, normals, areas] = gencolloc(panels);
done = ’generated collocation points’

Now, we have centroids, using this information, one can get the collocation
matrix. It's interesting that the same calcp is used to get the matrix.

23e {Generate the collocation matrix 23e)= (23a)
% Generate the collocation matrix
[matrix] = collocation(panels,centroids);
done = ’generated matrix’

Now we can solve the matrix to get the w, which is Q = w X AREA.

23f (Generate RHS, MATRIX and solve them 23f)= (23a)
% Create the rhs
[r,c] = size(matrix);
rhs = ones(r,1);

% Solve for the charge density vector

g = matrix \ rhs;
done = ’solved for charge’

23



Using the equation Q = CV, and as the boundary condition of V as 1. We
know that Q = C, so all we have to do is integrate or sum every Q.

After that, we multiply by the value 47 to get the capacitance.*

24 (Integrate(Sum) to get the result 24)= (23a)
% Integrate the charge over the surface to compute the capacitance.
% But first multiply the charge density by the panel area.
q=4q .* areas.’;
C = sum(q);

% Scale the capacitance by the free space dielectric permitivity and 4pi.
Creal = E 0 * 4 * pi * C;

Defines:
Creal, used in chunk 23a.
Uses E_0 23b.

4) Why 4ne?

24



6 collocation.m

collocation uses the calcp in order to get the ‘fss’. The ‘fss’ value is just the
collocation matrix.

25 {collocation 25)=
function matrix = collocation(panels,centroids)

%
%
%
%
%
%
%
%
%
%
%
%
%
%

Fills in matrix relating panel charges to collocation point potentials.
Panel is stored as 3-D array

[panel verts, cond num, 0]

[vert 1 x,y,z]

[vert 2 x,y,z]

[vert 3 x,vy,z]

[vert verts Xx,y,z]

Centroids stored as a matrix with 3 columns.
[vert 1 x,y,z]

[vert 2 x,y,z]

[vert 3 x,y,z]

Setting up the collocation matrix

[rows,cols,numpanels] = size(panels);
for i=1:numpanels

numverts = panels(1,1,i);

panel = panels(2:numverts+1,:,1i);

[area, collocpt, Z, fss] = calcp(panel, centroids);
matrix(:,i) = fss’;

end

Defines:
collocation, never used.

25



7 List of code chunks

(Check if the line is Q format or T format 4b)
(Check the size of the list 5)

(Fill out the list 6a)

(Fill out the list for T format 6b)

(Fill out the values 7)

(readpanel 3)

(scan the line 4a)

(file read 9a)

(read Q format 9b)

(read T format 9c)

(readpanels 8a)

(remove dummy 9d)

(set dummy 8b)

(draw a line 11d)

(draw lines 10c)

(get the size 10b)

(getx 11a)

(gety 11b)

(getz 11c)

(plotpanels 10a)

(calcp 12)

(calculate X,Y and Z 15)

(check that panel is in the x-y panel 18a)
(check the arguments 13b)

(check the input 13a)

(Compute the contributions terms for each edge 18b)
(Done with Setup, now loop through the evaluation points!! 19)
(get the area 16a)

(get the centroid points 17)

(normalize panel axies 16b)

(Point eval pt in in new coordinate system and get the z-comp 22)
(set sides 14b)

(calccap 23a)

(Compute centroid, normals, and areas 23d)
(Generate RHS, MATRIX and solve them 23f)
(Generate the collocation matrix 23e)
(Integrate(Sum) to get the result 24)

(Read in the panels 23c)

(set the constant 23b)

{collocation 25)

26



8 Index

Underlined indices denote definitions; regular indices denote uses.

readpanel: 3
readpanels: 8a
plotpanels: 10a

area: 12, 14b, 16a, 19
centroid: 12,17, 22
coord: 16b, 17,22

ct: 18b, 19
diagLength: 15,17, 18a
edgelLength: 14b, 18b, 19
npanel: 17, 18a, 18b, 19
side: 14b, 19

st: 18b, 19

X: 15, 16b, 17

Y: 15, 16b, 17

Z:12,15, 16a, 16b
Creal: 23a,24

E_0: 23b, 24
collocation: 25

27



	Contents
	readpanel.m
	Data format
	Code Analysis

	readpanels.m
	plotpanels.m
	calcp.m
	Code Analysis

	calccap.m
	collocation.m
	List of code chunks
	Index


