Perl TpX:
d I 2 WX ja =2 A 37

Defining I#TEX macros in terms of Perl codef

Scott Pakin
scott+pt@pakin.org

2008d 1€ 114

ok

8 9

PerlTgX2 2 23 YE (perltex.pl)®t HEIEX2:e 2©Yd Y

(perltex.sty)2 FAFH Qdtt. o5 A Ao, AF&AZF BIEX

WamE @ TEe A4 5 A o F0h B W=2E @W B8 w

Sw ThE BIEX wMazs TE5 A bt o8 5ol PerlEXS IIEXS)
3

=J
z# 57 Be) Z2add 592 e

Jolth A, 2 T2 28w Adoj= b T

rlo
2}
Mo
N
b
¥
1o
PN
i
>,
[>
T,

g
@
%
N
B
rl
o
Wl
-
>,
X
=2
i)
Ach
il
offf
rlr

Mo Y,
)
T
Bl
>

T
-
o,
ok
rlr
pacy

71 EA o 7= UTRX 7]¥to 2 3tH A <k7Ee] Perl 3 = 7Is
3 ot PerlTpX2 8 F =& BTEX wA ol 915810 719 9ol A AFSA7F w2
25 AT ol TeXolu BIEX Z = thilof] 2 3=

oA & 3t EoBAL ETEY JFA £Fo] F =,
AR E BT Bart Jotar spAL ofF ©esk A 2 A v BIEX A2 5 1

*H o: slomo (http://faq.ktug.or.kr/faq/slomo)
TThis document corresponds to PerlTRX v1.3, dated 2006/06/24.

AU=RE 44T 5 U T TEX Qojol FE3 52T ol 35 4ol 2
Spehy SHA R, @o] 4] WP S B2 ST BOFE ofF Tk BA9L
split WP o2 FepA o] do] BES W51l reverse YH R H5S FAFS
Zof, join Y o= ThA] AW Hrh oF#f \reversewords "] A ZE PerlTEX
oA Aeolste ol qlrt

\perlnewcommand{\reversewords}[1]{join " ", reverse split " ", $_[0]}

el YA, EA “\reversewords{Try doing this without Perl!}’ 2}
2 “Perl! without this doing Try” 2t ElAE 7} glE o] At} 7H6HA] 927}
A% sht o Fol mAk ol LAl S KIEXeIA Fol 2 BRI oA 319 27

\perlnewcommand{\substr}[3]{substr $_[0], $_[1], $_[21%}
\substr "} I 2= o] B} IIEX W22 9} E7to] A}2E £ gtk 28z He
substr A Fstr| = sk

\newcommand{\str}{superlative}

A sample substring of ‘‘\str’’ is ‘‘\substr{\str}{2}{4}’’.

4

A sample substring of “superlative” is “perl”.

F o BT o AN ANA, BEA YRS YT W P =B
0§ 51¥ IIEX W€ o] 83 AW Auh § F9A LA Asina

\perlnewcommand{\hilbertmatrix}[1]{
my $result =’
\ [

\renewcommand{\arraystretch}{1.3}

).
>

$result .= ’\begin{array}{’ . ’c’ x $_[0] . "}\n";
foreach $j (0 .. $_[0]-1) {
my Qrow;
foreach $i (0 .. $_[0]-1) {
push @row, ($i+$j) 7 (sprintf ’\frac{1}{%d}’, $i+$j+1) : *1’;

}
$result .= join (° & ’, Grow) . " \\\\\n";
}
$result .= ’\end{array’}
\1’;
return $result;

}

\hilbertmatrix{20}

<

1 1 1 1 1 1 1 1 1 't 1 1 1 1 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
i i 1 1 3 1 1 1 i 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i1 1 1 1 1 i 1 3 L 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1 1 11 1 1 1 3@ L L 1 1 1 1 1
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
i1 1 1 1 1 1 1 i i 1 1 1 1 1
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i1 i 1 1 13 1 1 1 1 L 1 1 1 1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i1 1 1 1 1 1 1 r r 1 1 1 1 1
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
i xr 1 1 3 1 1 i L 1 1 1 1 1
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
i3+ 1 1@ 1 1 1 1 1 1 i 1 1 1 1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 1 1xr 1 1 i 3 r 1 1 1 1 1
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1l 3 1 1 1 1 1 i i 1 1 1 1 1 1
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1l 1 1 13xr 1 1 1 i 1 1 1 1 1 1
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
1 1 1 xr 1 i i 3 ' 1 1 1 1 1 1
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1l 1 3 3 1 1 1 i 1 1 1 1 1 1 1
4 15 16 1r 18 19 20 21 22 23 24 25 26 27 28
1l 3 1 3 31 1 1 1 1 1 1 1 1 1 1
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

A2 45 \perlnewcommand, \perlrenewcommand®} $<}7|, PerlTEX
\perlnewenvironment?} \perlrenewenvironment "I Z2E A|-F3sit}. 3

eN
7 (environment) VA= B F=E ART = Y= Zolth off v+ o=

spreadsheet #7324, tabular &3-S A3t vzl AYH 3y S Us
= A

o] Zt}. o] o & PerlTEX §lo] +& 3}

\newcounter{ssrow}
\perlnewenvironment{spreadsheet}[1]{

my $cols = $_[0];

my $header = "A";

my $tabular = "\\setcounter{ssrow}{1}\n";

$tabular .= ’\newcommand*{\rownum}{\thessrow\addtocounter{ssrow}{1}}’ . "\n";
$tabular .= ’\begin{tabular}{@{}r|*{’> . $cols . *HHr}e{}}’ . "\n";
$tabular .= ’\\multicolumn{i1}{@{}c}{} &’ . "\n";
foreach (1 .. $cols) {
$tabular .= "\\multicolumn{1}{c";
$tabular .= ’@{}’ if $_ == $cols;
$tabular .= "}{" . $header++ . "}";
if ($_ == $cols) {
$tabular .= " \\\\ \\cline{2-" . ($cols+1) . "}
}
else {
$tabular .= " &";
}
$tabular .= "\n";
}
return $tabular;
H
return "\\end{tabular}\n";
}
\begin{center}

\begin{spreadsheet}{4}
\rownum & 1 & 8 & 10 &
\rownum & 12 & 13 & 3 &
\rownum & 7 & 2 & 16 &
\rownum & 14 & 11 & 5 &

\end{spreadsheet}

\end{center}

15 \
\
\

~

5
6
9
4

\perlnewcommand
\perlrenewcommand
\perlnewenvironment
\perlrenewenvironment

\perldo

Al2d AR

PerlTEX S A18317] S1al4) e AL % AR olch 34, 2419 A2 (prean-
ble)ol] ¥F=A] “\usepackage{perltex}” o]} 3§ o] Z 3% ofoF 3tr}= Ao|r}.
o] o] 9lo]oF \perlnewcommand, \perlrenewcommand, \perlnewenvironment,
\perlrenewenvironment W Z 25 o] &% 4 o} B4, BWIEX EAE Auds
W] perltex.pl 2T HEE A of stt}= Zlo|t}

21 ¥ wjaz Folsr|g AQ e

perltex.styoll= ©HA7FA w227k Ae=o] itk \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, \perlrenewenvironment, \perldo.
o] Z oro] Ylo] T2t vpAle A3l A zhzhe] WIEX 2:]S w2 = 9} Zrh

=, Z+7ZF \newcommand, \renewcommand \newenvironment, \renewenvironment

of thgdtth & wimze HEAZF 2 =g Ho A o]F T FHL
% DX m=2 AA4STs dol thE Wolth perltex.sty A8 %
(optional argument)® A|@3tx W& BEx e (starred form)= A Y3t}
(el 259], \perlnewcommand#, \perlrenewcommand#, \perlnewenvironments,
\perlrenewenvironment*). \perldot ¥ FE TS SA] AgPA7]7] 3t
Aoz Wazy #42 (4)3e 84 ek

PullpXe s 4218 2z 848 3 Augdos dsdr. Ausds)

2o WAz /B9 o] B2 WEUA T o] “Latex "ol eHe HEAI B
th A& £, PerlTpX2o 2 AHol¥ ETEX W Z 2 2] o]E o] \myMacroZ}H &
Ao g s+ E AEFH o]FL latex_myMacroZ} Et}h mjaZ &2 9] QI
(argument)= A EBEZEQ] Qxz WHIFATE WIEX waZ9 #1 AXE= A
$_[0]o2 Fxd ¢ Ja#2+ $_[11E FxE 5 = Ao

$89 @ nEow ToolE Waze wAd 483 4 At AW,
PerlTEX2 ¥ F =& oFA B AR} (secure sandbox) o] A AP A 71th= H-& 7] <
Sheh of ol Eo GAAOR ABAL AT 9 B A4, 117} unlink,

rmdir, system 22 ZS AR #HEFY o2 7 drlk= SEolt). (o] RE,
Ad A7 A5 S mE A Aotk AWe 228 B2 48 B4R} 9

}

fr g o

of

o2 QI3 ThE AHgo] BWE PallgX #4E, 150 U AFHe 22 22
A ohd7t AASA 2w, dAsA Y= 5 Ak

Sluke]l e A7 A A 1ateX A3 5ok AR H T} o] B2 \perlnewcommand
o)3 Ao oje] Az ol Az Az 528 5 Yok Folth ® Ao

Wk oy mjag 220 24 fAdHE Xol7] = stk

\perlnewcommand{\setX}[1]{$x = $_[0]; return ""}
\perlnewcommand{\getX}{’x was set to > . $x . ’.°}
\setX{123}

\getX

\setX{456}

\getX

\perldo{$x = 7892}

\getX

4

x was set to 123. x was set to 456. x was set to 789.

a2l Axt= B2 AR Ao BTEXel 93] & (expansion)E 4=
t}h ot w2z HoE K AL A7} \begin{verbatim#*}...\end{verbatim*}
Apol ol Aol .
\perlnewcommand{\verbit}[1]{

"\\begin{verbatim*}\n$_[0]\n\\end{verbatim*}\n"
}

webA, “Averbit{\TeX}’& ZZ3tH “\Tex’9 %, U7} “T\kern
-.1667em\lower .5ex\hbox {E}\kern -.125emX\spacefactor \@m” o] Z &2 7
o]a o] A & wietd wp7h obd A olth. o A A2 \noexpandE A&t Zolth
\verbit{\noexpand\TeX} = \TeX. “Robust” macros as well as \begin and \end
are implicitly preceded by \noexpand.

2.2 perltex.pl A33}7]

o]o] 2] & | o] A 52 perltex.pl ZE WO AYAE IhE FL2 Zlot}h 4
d R B B Ao perltex.ple AAZ @l --help
W At Fo| t}%3 pod2(something) =72 AFRSIA HAA Zza

ok YA o YT 4 Aok BIEX, HTML, 9k glAE, fya
man-page @4} o] A AL} dE S0, thx Y-S o] &31Y perltex.plol A
Fiz W o8 BEo] U 5 gtk
pod2man --center=" " --release=" " perltex.pl > perltex.l1

NAME

perltex — enable IATEX macros to be defined in terms of Perl code

SYNOPSIS

perltex [~help] [-latex=program| [-[no]safe] [-permit=feature] [-makesty] [la-

tex options]

DESCRIPTION

BTEXE, 7 7127} 5 & TX 28 A282 53, ol5 @7 208 £48 0E

AT 2 AL Aol 2P offlek. T3, HAW £AD 2542

e AL aA LEHth Be 9 AR A 54 21U dojw
‘_]. H

BE2d zZo) 73alth 1A

2 BTEXS] 23 588 2848 = & Zo|th perl-
9ol AT 5 YES AFE w oItk AL} ok T UL
DTEX BA S AL & uff latex T Al of] perltexS Al&-31= Z1 ¥ o]t} (perltex
L AAZE latex?] wrappero]”7] W&o latex2] 7|%5o] AFEtA ALY 1A=
F=rt}) EA2] A& (preamble)d] \usepackage{perltex}S Z3SrA]|7] 7|t 6‘]—11]
\perlnewcommand¥} \perlrenewcommand "] 25 AF&3 4= ¢1A Hr}. o] A

9] 2% whAle MATREX 9] \newcommand, \renewcommand®} 5 s}t}. Tk UHE_E
o] o] BIEX 3= thale] B =& 7pdcks Awk thac).

OPTIONS
perltexo] WolEol: Wy gL b3} 2rk
--help

712 A Q1 Aol B3 AR E HojETh

--latex=program

latex T)Al AFgS = 2 738 A AT} o & 59], --latex=pdflatex %
4g Fd A% BAS 299 o pdfiatexs AHE AT

--[no]safe

EHPAAE AAY B2} 7| EAH O E --safe 34 0] AIRE 1, perltex-
\perlnewcommand &=+ \perlrenewcommand W] I Z o] AH H F=E H
S8 8704 QYA 5L Ao} 9N m2 1Y AW 2L Y
3 F2h2 A gEh --nosafe 345 FA A BIRX £A4+= @2 914
g it ol® @ RE ot AN 5 UL, BekA AEA) HAE
ol JfE 71 % Ut} o AAF AR E Safe FZE.

O:

--permit=feature

543 2 dite]l 5+ S d7hstt) --permit F4-2 85 ol A
olelwl A8 4 913, perltex Zel4A1E o FUsA Aol & Atk
t] AJAsE R E Opcode FZ

--makesty
o] F4E FH noperltex.styet= ©] 52 BIEX 28 stdo] AT 1
g1 g BEAY \usepackage{perltex} & \usepackage{noperltex}
© 2 H}3 1 PerlTpX ¢lo] 593 2898 98 4 A At o] A2 PerlTEX

= AAEA k2 Al —‘E’ﬂ% Wz o #F83tek G2 noperl-
ter.sty 2BFD 3L T2 WS ol AFRE vtR O AT &80] 9
th= Zolth wheko] s A9 UTEX W22 oy mas 25 FES
HFE T perltex$ --makesty 542 Fol A thA] &7 oF 3t}

o] FAE HoloA AFETE FAHL latex (= —-latex A Z XA =
2 ALY ter 51D o] FH A dgdch

EXAMPLES

-

7HE @3 AR 2 perltexS latex A ® ARE-8h= A ol th:

perltex myfile.tex

At & latex thAlol pdflatex-g AH-E-3tel ¥, —-latex F4& £ Atk

perltex --latex=pdflatex myfile.tex

IXTEX©] “trapped by operation mask” o2& Wil A|F AI}L3Ie = .texo]
ofo79l B REE AR Pk G A9t (E Sof, 22w

2Hd 8 ZA1Q A% perltex®] ¢HA WA UZES --nosafe $H 02 T 4 Qlth

perltex --nosafe myfile.tex

oS W32 gt E Ao perltex? 7] A3lQl :browseol 3LS 21 time
HHS 22T e AT 2%
perltex --permit=:browse --permit=:filesys_open
--permit=time myfile.tex
ENVIRONMENT

perltex2 T2 37 AL ES Fa83% 202 dholEQlth
PERLTEX
BIEX H52el AAde ARun. DIEX s g
1

FILES

Astdete 3 o] jobname.terol 2kl YL wl, perltex th-2 7 22 A=<
AHg-ght}:

jobname.lgpl
ol oo A4d 23 3Y; B a2 E WA o =50 At

jobname.topl

o] Fedol @1l

o,

HE WTpXelA 22 dgd otk
jobname. frpl

o B}ol P11 Fu & B4 DX o2 A2 Aot}
jobname.tfpl

o] “flag” o] oW jobname.toplol] FETF HlolE7}F EojJTh=
o)t

b

jobname. ffpl

o] “flag” u}do]l AW jobname.frploll FE3F HlolE 7} S0ttt =
o]t}

jobname.dfpl
o] “flag” a}Lo] oW jobname.fipl7} 2A|F QA th= LEo| .
noperltex-#.tex

Zy 3} AL noperitez.styoll &3 BAH ACZE PerlTpX 22 T&2 93
Aelt

NOTES

perltex?] 2 A=} 7|2 AL Opcodeo| A “:browse” 2t &)= Zo|t}.

SEE ALSO

latex(1), pdflatex(1), perl(1), Safe(3pm), Opcode(3pm)

AUTHOR

Scott Pakin, scott+pt@pakin.org

10

Al 3 4 Implementation

Users interested only in using PerlTEX can skip Section 3, which presents the
complete PerlTEX source code. This section should be of interest primarily to
those who wish to extend PerlTEX or modify it to use a language other than Perl.

Section 3 is split into two main parts. Section 3.1 presents the source code for
perltex.sty, the IXTEX side of PerlTEX, and Section 3.2 presents the source code
for perltex.pl, the Perl side of PerlTEX. In toto, PerlTEX consists of a relatively
small amount of code. perltex.sty is only 226 lines of KTEX and perltex.pl
is only 302 lines of Perl. perltex.pl is fairly straightforward Perl code and
shouldn’t be too difficult to understand by anyone comfortable with Perl pro-
gramming. perltex.sty, in contrast, contains a bit of I’ TEX trickery and is prob-
ably impenetrable to anyone who hasn’t already tried his hand at N TEX program-
ming. Fortunately for the reader, the code is profusely commented so the aspiring
ETEX guru may yet learn something from it.

After documenting the perltex.sty and perltex.pl source code, a few sug-
gestions are provided for porting PerlTEX to use a backend language other than
Perl (Section 3.3).

3.1 perltex.sty

Although I've written a number of IXTEX packages, perltex.sty was the most
challenging to date. The key things I needed to learn how to do include the fol-

lowing:
1. storing brace-matched—Dbut otherwise not valid I#TEX—code for later use

2. iterating over a macro’s arguments

Storing non-I4TEX code in a variable involves beginning a group in an argu-
mentless macro, fiddling with category codes, using \afterassignment to specify
a continuation function, and storing the subsequent brace-delimited tokens in the
input stream into a token register. The continuation function, which also takes
no arguments, ends the group begun in the first function and proceeds using the
correctly \catcoded token register. This technique appears in \plmac@haveargs
and \plmac@havecode and in a simpler form (i.e., without the need for storing

the argument) in \plmac@urite@perl and \plmac@write@perl@i.

11

\ifplmac@have@perltex
\plmac@have@perltextrue

\plmac@have@perltexfalse

Iterating over a macro’s arguments is hindered by TEX’s requirement that “#”
be followed by a number or another “#”. The technique I discovered (which is used
by the Texinfo source code) is first to \1let a variable be \relax, thereby making
it unexpandable, then to define a macro that uses that variable followed by a loop
variable, and finally to expand the loop variable and \1let the \relaxed variable be
“#” right before invoking the macro. This technique appears in \plmac@havecode.

I hope you find reading the perltex.sty source code instructive. Writing it

certainly was.

3.1.1 Package initialization

PerlTEX defines six macros that are used for communication between Perl and
ETEX. \plmac@tag is a string of characters that should never occur within
one of the user’s macro names, macro arguments, or macro bodies. perltex.pl
therefore defines \plmac@tag as a long string of random uppercase letters.
\plmac@tofile is the name of a file used for communication from KTEX to Perl.
\plmac@fromfile is the name of a file used for communication from Perl to XTEX.
\plmac@toflag signals that \plmac@tofile can be read safely. \plmac@fromflag
signals that \plmac@fromfile can be read safely. \plmac@doneflag signals that
\plmac@fromflag has been deleted. Table 1 lists all of these variables along with
the value assigned to each by perltex.pl.

3t 1: Variables used for communication between Perl and ETEX

Variable Purpose perltex.pl assignment
\plmac@tag \plmac@tofile field separator (20 random letters)
\plmac@tofile ITEX — Perl communication \jobname . topl
\plmac@fromfile Perl — ITEX communication \jobname.frpl

\plmac@toflag \plmac@tofile synchronization \jobname.tfpl
\plmac@fromflag \plmac@fromfile synchronization \jobname.ffpl
\plmac@doneflag \plmac@fromflag synchronization \jobname.dfpl

The following block of code checks the existence of each of the variables listed
in Table 1 plus \plmac@pipe, a Unix named pipe used for to improve perfor-
mance. If any variable is not defined, perltex.sty gives an error message and—
as we shall see on page 27—defines dummy versions of \perl[re|newcommand and

\perl|re|newenvironment.

12

1 \newif\ifplmac@have@perltex

2 \plmac@have@perltextrue

3 \@ifundefined{plmac@tag}{\plmac@have@perltexfalse}{}

4 \@ifundefined{plmac@tofile}{\plmac@have@perltexfalse}{}

5 \@ifundefined{plmac@fromfile}{\plmac@have@perltexfalse}{}
6 \@ifundefined{plmac@toflag}{\plmac@have@perltexfalse}{}

7 \@ifundefined{plmac@fromflag}{\plmacChave@perltexfalse}{}
8 \@ifundefined{plmac@doneflagl}{\plmac@have@perltexfalse}{}
9 \@ifundefined{plmac@pipe}{\plmac@have@perltexfalse}{}

10 \ifplmac@have@perltex

11 \else

12 \PackageError{perltex}{Document must be compiled using perltex}

13 {Instead of compiling your document directly with latex, you need
14 to\MessageBreak use the perltex script. \space perltex sets up
15 a variety of macros needed by\MessageBreak the perltex

16 package as well as a listener process needed for\MessageBreak

17 communication between LaTeX and Perl.}

18 \fi

3.1.2 Defining Perl macros

PerlTEX defines five macros intended to be called by the author.

tion 3.1.2 details the implementation of two of them: \perlnewcommand and

\perlrenewcommand. (Section 3.1.3 details the implementation of the next two,

\perlnewenvironment and \perlrenewenvironment; and, Section 3.1.4 details

the implementation of the final macro, \perldo.) The goal is for these two macros

to behave exactly like \newcommand and \renewcommand, respectively, except that

the author macros they in turn define have Perl bodies instead of IXTEX bodies.

The sequence of the operations defined in this section is as follows:

1. The user invokes \perl|re|newcommand, which stores \[re|newcommand

in \plmac@command. The \perl|re|newcommand macro then
vokes \plmac@newcommand@i with a first argument of “x”

“l”

\perl[re|newcommand* or “!” for ordinary \perl|re|newcommand.

2. \plmac@newcommand@i defines \plmac@starchar as “x” if it was passed

“l”

a “x” or (empty) if it was passed a “!”. It then stores the name of the

user’'s macro in \plmacOmacname, a \writeable version of the name in

13

\plmac@cleaned@macname, and the macro’s previous definition (needed by
\perlrenewcommand) in \plmac@oldbody. Finally, \plmac@newcommand@i

invokes \plmac@newcommand@ii.

. \plmac@newcommand@ii stores the number of arguments to the user’s
macro (which may be zero) in \plmac@numargs. It then invokes
\plmac@newcommand@iii@opt if the first argument is supposed to be op-
tional or \plmac@newcommand@iii@no@opt if all arguments are supposed to

be required.

. \plmac@newcommand@iii®opt defines \plmac@defarg as the default value
of the optional argument. \plmac@newcommand@iii@no@opt defines it as

(empty). Both functions then call \plmac@haveargs.

. \plmac@haveargs stores the user’s macro body (written in Perl) verbatim

in \plmac@perlcode. \plmac@haveargs then invokes \plmac@havecode.

. By the time \plmac@havecode is invoked all of the information needed to
define the user’s macro is available. Before defining a ETEX macro, how-
ever, \plmac@havecode invokes \plmac@write@perl to tell perltex.pl to
define a Perl subroutine with a name based on \plmac@cleaned@macname
and the code contained in \plmac@perlcode. Figure 1 illustrates the data

that \plmac@write@perl passes to perltex.pl.

DEF

\plmac@tag
\plmac@cleaned@macname
\plmac@tag
\plmac@perlcode

23 1: Data written to \plmac@tofile to define a Perl subroutine

. \plmac@havecode invokes \newcommand or \renewcommand, as appropriate,
defining the user’s macro as a call to \plmac@write@perl. An invocation of
the user’s ITEX macro causes \plmac@urite@perl to pass the information

shown in Figure 2 to perltex.pl.

. Whenever \plmacOwrite@perl is invoked it writes its argument ver-
batim to \plmac@tofile; perltex.pl evaluates the code and writes

\plmac@fromfile; finally, \plmac@write@perl \inputs \plmac@fromfile.

14

USE

\plmac@tag

\plmac@cleaned@macname

\plmac@tag

#1

\plmac@tag

#2

\plmac@tag

#3

|

3 2: Data written to \plmac@tofile to invoke a Perl subroutine

An example might help distinguish the myriad macros used internally by

perltex.sty. Consider the following call made by the user’s document:

\perlnewcommand*{\example}[3] [frobozz]{join("---", @_)}

Table 2 shows how perltex.sty parses that command into its constituent com-

ponents and which components are bound to which perltex.sty macros.

3t 2: Macro assignments corresponding to an sample \perlnewcommand*

Macro

Sample definition

\plmac@command
\plmac@starchar
\plmac@macname
\plmac@cleaned@macname
\plmac@oldbody
\plmac@uumargs
\plmac@defarg
\plmac@perlcode

\newcommand

*

\example

\example (catcode 11)
\relax (presumably)
3

frobozz

join("---", @.) (catcode 11)

\perlnewcommand \perlnewcommand and \perlrenewcommand are the first two commands exported

\perlrenewcommand to the user by perltex.sty. \perlnewcommand is analogous to \newcommand

\plmac@command except that the macro body consists of Perl code instead of IXTEX code.

\plmac@next Likewise, \perlrenewcommand is analogous to \renewcommand except that the

macro body consists of Perl code instead of IHTEX code. \perlnewcommand and

15

\plmac@newcommand@i
\plmac@starchar
\plmac@macname
\plmac@oldbody

\plmac@cleaned@macname

\plmac@newcommand@ii

\plmac@numargs

\perlrenewcommand merely define \plmac@command and \plmac@next and invoke
\plmac@newcommand@i

19 \def\perlnewcommand{%

20 \let\plmac@command=\newcommand

21 \let\plmac@next=\relax

22 \@ifnextchar*{\plmac@newcommand@i}{\plmac@newcommand@i!}%

23 }

24 \def \perlrenewcommand{%

25 \let\plmac@next=\relax

26 \let\plmac@command=\renewcommand

27 \@ifnextchar*{\plmac@newcommand@i}{\plmacOnewcommand@i!l}y,

28 }

If the user invoked \perl[re|newcommand* then \plmac@newcommand@i is
passed a “¥” and, in turn, defines \plmac@starchar as “x*”. If the user in-
voked \perl|rejnewcommand (no “*”) then \plmac@newcommand@i is passed

“'77

a and, in turn, defines \plmac@starchar as (empty). In either case,
\plmac@newcommand@i defines \plmac@macname as the name of the user’s macro,
\plmac@cleaned@macname as a \writeable (i.e., category code 11) version of
\plmac@macname, and \plmac@oldbody and the previous definition of the user’s
macro. (\plmac@oldbody is needed by \perlrenewcommand.) It then invokes
\plmac@newcommand@ii.

29 \def\plmac@newcommand@i#1#2{/,

30 \ifx#1x*%

31 \def\plmac@starchar{*}},
32 \else

33 \def\plmac@starchar{}%
34 \fi

35 \def\plmac@macname{#2}%

36 \let\plmac@oldbody=#2\relax

37 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{y,
38 \expandafter\string\plmac@macname},

39 \@ifnextchar [{\plmac@newcommand@ii}{\plmac@newcommand@ii [0]2}%]
40 }

\plmac@newcommand@i invokes \plmac@newcommand®@ii with the number of argu-

ments to the user’s macro in brackets. \plmac@newcommand@ii stores that num-

16

\plmac@newcommand@iii@opt
\plmac@newcommand@iii@no@opt

\plmac@defarg

\plmac@perlcode

\plmac@haveargs

ber in \plmac@numargs and invokes \plmac@newcommand@iii®@opt if the first ar-
gument is to be optional or \plmac@newcommand@iii@noopt if all arguments are
to be mandatory.

41 \def\plmacOnewcommand@ii [#1]{%

42 \def\plmac@numargs{#13}%

43 \@ifnextchar [{\plmac@newcommand@iii@opt}

44 {\plmac@newcommand@iii@no@opt}]

45 }

Only one of these two macros is executed per invocation of \perl|re|newcommand,
depending on whether or not the first argument of the user’s macro is an op-
tional argument. \plmac@newcommand@iii@opt is invoked if the argument is
optional. It defines \plmac@defarg to the default value of the optional argu-
ment. \plmac@newcommand@iii@no@opt is invoked if all arguments are manda-
tory. It defines \plmac@defarg as \relax. Both \plmac@newcommand@iii@opt
and \plmac@newcommand@iii@no@opt then invoke \plmac@haveargs.

46 \def\plmacOnewcommand@iii@opt [#1]{%

47 \def\plmac@defarg{#1}%

48 \plmac@haveargs

49 }

50 \def\plmac@newcommand@iii@no®@opt{’
51 \let\plmac@defarg=\relax
52 \plmac@haveargs

53 }

Now things start to get tricky. We have all of the arguments we need to define the
user’s command so all that’s left is to grab the macro body. But there’s a catch:
Valid Perl code is unlikely to be valid IXTEX code. We therefore have to read the
macro body in a \verb-like mode. Furthermore, we actually need to store the
macro body in a variable, as we don’t need it right away.

The approach we take in \plmac@haveargs is as follows. First, we give all
“special” characters category code 12 (“other”). We then indicate that the car-
riage return character (control-M) marks the end of a line and that curly braces
retain their normal meaning. With the aforementioned category-code definitions,
we now have to store the next curly-brace-delimited fragment of text, end the

current group to reset all category codes to their previous value, and continue

17

\plmac@sep

\plmac@argnum

processing the user’s macro definition. How do we do that? The answer is to as-
sign the upcoming text fragment to a token register (\plmac@perlcode) while an
\afterassignment is in effect. The \afterassignment causes control to transfer
to \plmac@havecode right after \plmac@perlcode receives the macro body with

all of the “special” characters made impotent.

54 \newtoks\plmac@perlcode

55 \def\plmac@haveargs{/
56 \begingroup

57 \let\do\@makeother\dospecials
58 \catcode‘\""M=\active

59 \newlinechar‘\~"M

60 \endlinechar=‘\""M

61 \catcode‘\{=1

62 \catcode‘\}=2

63 \afterassignment\plmac@havecode
64 \global\plmac@perlcode

65

Control is transfered to \plmac@havecode from \plmac@haveargs right af-
ter the user’s macro body is assigned to \plmac@perlcode. We now have
everything we need to define the user’s macro. The goal is to define it as
“\plmac@urite@perl{(contents of Figure 2)}”. This is easier said than done be-
cause the number of arguments in the user’s macro is not known statically, yet we
need to iterate over however many arguments there are. Because of this complex-

ity, we will explain \plmac@perlcode piece-by-piece.

Define a character to separate each of the items presented in Figures 1 and 2. Perl
will need to strip this off each argument. For convenience in porting to languages
with less powerful string manipulation than Perl’s, we define \plmac@sep as a

carriage-return character of category code 11 (“letter”).

66 {\catcode ‘\""M=11\gdef\plmac@sep{~"M}}

Define a loop variable that will iterate from 1 to the number of arguments in the

user’s function, i.e., \plmac@numargs.

67 \newcount\plmac@argnum

18

\plmac@havecode

\plmac@define@sub

\plmac@body

\plmac@hash

Now comes the final piece of what started as a call to \perl|re|newcommand. First,
to reset all category codes back to normal, \plmac@havecode ends the group that
was begun in \plmac®@haveargs.

68 \def\plmac@havecode{%
69 \endgroup

We invoke \plmac@write@perl to define a Perl subroutine named after
\plmac@cleaned@macname. \plmac@define@sub sends Perl the information shown

in Figure 1 on page 14.

70 \edef\plmac@define@subq{’

71 \noexpand\plmacQurite@perl{DEF\plmac@sep
72 \plmac@tag\plmac@sep

73 \plmac@cleaned@macname\plmac@sep

74 \plmac@tag\plmac@sep

75 \the\plmac@perlcode

76 Yh

77 Y%

78 \plmac@define@sub

The rest of \plmac@havecode is preparation for defining the user’s macro.
(IWTEX 2¢’s \newcommand or \renewcommand will do the actual work, though.)
\plmac@body will eventually contain the complete (IWTEX) body of the user’s
macro. Here, we initialize it to the first three items listed in Figure 2 on page 15
(with intervening \plmac@seps).

79 \edef\plmac@body{’
80 USE\plmac@sep

81 \plmac@tag\plmac@sep

82 \plmac@cleaned@macname

83 Yh

Now, for each argument #1, #2, ..., #\plmac@numargs we append a \plmac@tag

plus the argument to \plmac@body (as always, with a \plmac@sep after each
item). This requires more trickery, as TEX requires a macro-parameter char-
acter (“#7) to be followed by a literal number, not a variable. The approach
we take, which I first discovered in the Texinfo source code (although it’s
used by BTEX and probably other TEX-based systems as well), is to \let-bind

\plmac@hash to \relax. This makes \plmac@hash unexpandable, and because

19

\plmac@define@command

it’s not a “#”, TEX doesn’t complain. After \plmac@body has been extended
to include \plmac®@hashl, \plmac®@hash?2, ..., \plmac@hash\plmac@uumargs, we
then \let-bind \plmac@hash to ##, which TEX lets us do because we’re within a
macro definition (\plmac@havecode). \plmac@body will then contain #1, #2, ...,
#\plmac@numargs, as desired.

84 \let\plmac@hash=\relax

85 \plmac@argnum=\@ne

86 \loop

87 \ifnum\plmac@numargs<\plmac@argnum

88 \else

89 \edef\plmac@body{%

90 \plmac@body\plmac@sep\plmac@tag\plmac@sep

91 \plmac@hash\plmac@hash\number\plmac@argnum}’,
92 \advance\plmac@argnum by \@ne

93 \repeat
94 \let\plmac@hash=##},

We're ready to execute a \[re|newcommand. Because we need to expand many of our
variables, we \edef \plmac@define@command to the appropriate \[re|newcommand
call, which we will soon execute. The user’s macro must first be \1let-bound to
\relax to prevent it from expanding. Then, we handle two cases: either all argu-
ments are mandatory (and \plmac@defarg is \relax) or the user’s macro has an
optional argument (with default value \plmac@defarg).

95 \expandafter\let\plmac@macname=\relax

96 \ifx\plmac@defarg\relax

97 \edef\plmac@define@command{%

98 \noexpand\plmac@command\plmac@starchar{\plmac@macname}y,
99 [\plmac@numargs] {%

100 \noexpand\plmac@write@perl{\plmac@bodyl}’

101 Yh

102 Yh

103 \else

104 \edef\plmac@define@command{%

105 \noexpand\plmac@command\plmac@starchar{\plmacOmacnamel},
106 [\plmac@numargs] [\plmac@defarg] {/

107 \noexpand\plmac@urite@perl{\plmac@bodyl}’

108 Yh

20

\perlnewenvironment
\perlrenewenvironment
\plmac@command

\plmac@next

109 Y
110 \fi

The final steps are to restore the previous definition of the user’s macro—
we had set it to \relax above to make the name unexpandable—then redefine
it by invoking \plmac@define@command. Why do we need to restore the previous
definition if we’re just going to redefine it? Because \newcommand needs to produce
an error if the macro was previously defined and \renewcommand needs to produce
an error if the macro was not previously defined.

\plmac@havecode concludes by invoking \plmac@next, which is a no-op for
\perlnewcommand and \perlrenewcommand but processes the end-environment
code for \perlnewenvironment and \perlrenewenvironment.

111 \expandafter\let\plmac@macname=\plmac@oldbody
112 \plmac@define@command

113 \plmac@next

114 }

3.1.3 Defining Perl environments

Section 3.1.2 detailed the implementation of \perlnewcommand and
\perlrenewcommand. Section 3.1.3 does likewise for \perlnewenvironment
and \perlrenewenvironment, which are the Perl-bodied analogues of
\newenvironment and \renewenvironment. This section is significantly shorter
than the previous because \perlnewenvironment and \perlrenewenvironment

are largely built atop the macros already defined in Section 3.1.2.

\perlnewenvironment and \perlrenewenvironment are the remaining two
commands exported to the user by perltex.sty. \perlnewenvironment is
analogous to \newenvironment except that the macro body consists of Perl
code instead of WTEX code. Likewise, \perlrenewenvironment is analogous to
\renewenvironment except that the macro body consists of Perl code instead of
ETEX code. \perlnewenvironment and \perlrenewenvironment merely define
\plmac@command and \plmac@next and invoke \plmac@newenvironment@i.

The significance of \plmac@next (which was let-bound to \relax for
\perl[re|newcommand but is let-bound to \plmac@end@environment here) is that
a IMTEX environment definition is really two macro definitions: \(name) and

\end(name). Because we want to reuse as much code as possible the idea is to

21

\plmac@newenvironment@i
\plmac@starchar
\plmac@envname
\plmac@macname
\plmac@oldbody

\plmac@cleaned@macname

\plmac@end@environment
\plmac@next
\plmac@macname
\plmac@oldbody

\plmac@cleaned@macname

define the “begin” code as one macro, then inject—by way of plmac@next—a call
to \plmac@end@environment, which defines the “end” code as a second macro.
115 \def\perlnewenvironment{},

116 \let\plmac@command=\newcommand

117 \let\plmac@next=\plmac@end@environment

118 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment@i!l}y,

119 }

120 \def\perlrenewenvironment{%

121 \let\plmac@command=\renewcommand

122 \let\plmac@next=\plmac@end@environment

123 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment®@i!}y

124 }

The \plmac@newenvironment@i macro is analogous to \plmac@newcommand@i;
see the description of \plmac@newcommand@i on page 16 to understand the ba-
sic structure. The primary difference is that the environment name (#2) is just
text, not a control sequence. We store this text in \plmac@envname to facilitate
generating the names of the two macros that constitute an environment defini-
tion. Note that there is no \plmac@newenvironment@ii; control passes instead to
\plmac@newcommand@ii.

125 \def\plmac@newenvironment@i#1#2{}

126 \ifx#1xJ,

127 \def\plmac@starchar{*}},

128 \else
129 \def\plmac@starchar{}/,
130 \fi

131 \def\plmac@envname{#2}J,

132 \expandafter\def\expandafter\plmac@macname\expandafter{\csname#2\endcsname}’
133 \expandafter\let\expandafter\plmac@oldbody\plmac@macname\relax

134 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{’,

135 \expandafter\string\plmac@macname}’

136 \@ifnextchar [{\plmac@newcommand@ii}{\plmac@newcommand@ii [0]}%]

137 }

Recall that an environment definition is a shortcut for two macro definitions:

\(name) and \end(name) (where (name) was stored in \plmac@envname by

22

\plmac@newenvironment@i). After defining \(name), \plmac@havecode trans-
fers control to \plmac@end@environment because \plmac@next was let-bound to
\plmac@end@environment in \perl|re|newenvironment.

\plmac@end@environment’s purpose is to define \end(name). This is a little
tricky, however, because BTEX’s \[re|newcommand refuses to (re)define a macro
whose name begins with “end”. The solution that \plmac@end@environment
takes is first to define a \plmac@end@macro macro then (in plmac@next) let-
bind \end(name) to it. Other than that, \plmac@end@environment is a com-
bined and simplified version of \perlnewenvironment, \perlrenewenvironment,
and \plmac@newenvironment@i.

138 \def\plmac@end@environment{’

139 \expandafter\def\expandafter\plmac@next\expandafter{\expandafter

140 \let\csname end\plmac@envname\endcsname=\plmac@end@macro
141 \let\plmac@next=\relax
142 Yh

143 \def\plmac@macname{\plmac@end@macrol}

144 \expandafter\let\expandafter\plmacQoldbody\csname end\plmac@envname\endcsname
145 \expandafter\def\expandafter\plmacQcleaned@macname\expandafter{’

146 \expandafter\string\plmac@macnamel}’

147 \@ifnextchar [{\plmac@newcommand@ii}{\plmac@newcommand@ii [0]}%]

148 }

3.1.4 Executing top-level Perl code

The macros defined in Sections 3.1.2 and 3.1.3 enable an author to inject subrou-
tines into the Perl sandbox. The final Perl TEX macro, \perldo, instructs the Perl
sandbox to execute a block of code outside of all subroutines. \perldo’s imple-
mentation is much simpler than that of the other author macros because \perldo
does not have to process subroutine arguments. Figure 3 illustrates the data that

gets written to plmac@tofile (indirectly) by \perldo.

RUN

\plmac@tag
Ignored
\plmac@tag
\plmac@perlcode

19 3: Data written to \plmac@tofile to execute Perl code

23

\perldo

\plmac@have@run@code

\plmac@run@code

Execute a block of Perl code and pass the result to KTEX for further processing.
This code is nearly identical to that of Section 3.1.2°s \plmac@haveargs but ends
by invoking \plmac@have@run@code instead of \plmac@havecode.

149 \def\perldo{%
150 \begingroup

151 \let\do\@makeother\dospecials

152 \catcode‘\~"M=\active

153 \newlinechar ‘\""M

154 \endlinechar=‘\""M

155 \catcode ‘\{=1

156 \catcode ‘\}=2

157 \afterassignment\plmac@have@run@code
158 \global\plmac@perlcode

159 }

Pass a block of code to Perl to execute. \plmac@have@run@code is identical to
\plmac@havecode but specifies the RUN tag instead of the DEF tag.
160 \def\plmac@have@run@code{%

161 \endgroup
162 \edef\plmac@run@code{%

163 \noexpand\plmac@uwrite@perl{RUN\plmac@sep
164 \plmac@tag\plmac@sep

165 N/A\plmac@sep

166 \plmac@tag\plmac@sep

167 \the\plmac@perlcode

168 Yh

169 }%

170 \plmac@run@code
171 }

3.1.5 Communication between IXTEX and Perl

As shown in the previous section, when a document invokes \perl|re|newcommand
to define a macro, perltex.sty defines the macro in terms of a call to
\plmac@urite@perl. In this section, we learn how \plmac@write@perl operates.

At the highest level, W TEX-to-Perl communication is performed via the filesys-

tem. In essence, ITEX writes a file (\plmac@tofile) corresponding to the in-

24

\plmac@await@existence
\ifplmac@file@exists
\plmac@file@existstrue

\plmac@file@existsfalse

formation in either Figure 1 or Figure 2; Perl reads the file, executes the code
within it, and writes a . tex file (\plmac@fromfile); and, finally, INTEX reads and
executes the new .tex file. However, the actual communication protocol is a bit
more involved than that. The problem is that Perl needs to know when ETEX has
finished writing Perl code and TEX needs to know when Perl has finished writing
ETEX code. The solution involves introducing three extra files—\plmac@toflag,
\plmac@fromflag, and \plmac@doneflag—which are used exclusively for IXTEX-
to-Perl synchronization.

There’s a catch: Although Perl can create and delete files, N TEX can only create
them. Even worse, BWTEX (more specifically, teTEX, which is the TEX distribution
under which I developed PerlTEX) cannot reliably poll for a file’s nonexistence; if a
file is deleted in the middle of an \immediate\openin, latex aborts with an error
message. These restrictions led to the regrettably convoluted protocol illustrated
in Figure 4. In the figure, “Touch” means “create a zero-length file”; “Await”
means “wait until the file exists”; and, “Read”, “Write”, and “Delete” are defined
as expected. Assuming the filesystem performs these operations in a sequentially
consistent order (not necessarily guaranteed on all filesystems, unfortunately),
PerlTEX should behave as expected.

Time ETEX Perl
Write \plmac@tofile
Touch \plmac@toflag — | Await \plmac@toflag
Read \plmac@tofile
Write \plmac@fromfile
Delete \plmac@toflag
Delete \plmac@tofile
Delete \plmac@doneflag
Await \plmac@fromflag | < | Touch \plmac@fromflag
Read \plmac@fromfile
Touch \plmac@tofile — | Await \plmac@tofile

Delete \plmac@fromflag
v Await \plmac@doneflag | < | Touch \plmac@doneflag

I3 4: TEX-to-Perl communication protocol

The purpose of the \plmac@await@existence macro is to repeatedly check
the existence of a given file until the file actually exists. For conve-
nience, we use KETEX2¢’s \IfFileExists macro to check the file and invoke

\plmac@file@existstrue or \plmac@file@existsfalse, as appropriate.

25

\plmac@outfile

\plmac@write@perl

As a performance optimization we \input a named pipe. This causes the latex
process to relinquish the CPU until the perltex process writes data (always just
“Nendinput”) into the named pipe. On systems that don’t support persistent
named pipes (e.g., Microsoft Windows), \plmac@pipe is an ordinary file containing
only “\endinput”. While reading that file is not guaranteed to relinquish the CPU,
it should not hurt the performance or correctness of the communication protocol

between IXTEX and Perl.

172 \newif\ifplmac@file@exists

173 \newcommand{\plmac@await@existence} [1]{},

174 \input\plmac@pipe

175 \loop

176 \IfFileExists{#11}/,

177 {\plmac@file@existstrue}’%
178 {\plmac@file@existsfalsel}’,
179 \ifplmac@file@exists

180 \else

181 \repeat
182 }

We define a file handle for \plmac@uwrite@perl@i to use to create and write

\plmac@tofile and \plmac@toflag.

183 \newwrite\plmac@outfile

\plmac@urite@perl begins the ITEX-to-Perl data exchange, following the pro-
tocol illustrated in Figure 4. \plmac@write@perl prepares for the next piece of
text in the input stream to be read with “special” characters marked as category
code 12 (“other”). This prevents TEX from complaining if the Perl code contains
invalid I¥TEX (which it usually will). \plmac@write@perl ends by passing control
to \plmac@uwrite®@perl®@i, which performs the bulk of the work.

184 \newcommand{\plmac@write@perl}{/

185 \begingroup

186 \let\do\@makeother\dospecials
187 \catcode‘\""M=\active

188 \newlinechar ‘\""M

189 \endlinechar=‘\""M

190 \catcode ‘\{=1

26

\plmac@write@perl@i

191 \catcode ‘\}=2
192 \plmac@write@perl@i
193 }

When \plmac@write@perl@i begins executing, the category codes are set up so
that the macro’s argument will be evaluated “verbatim” except for the part con-
sisting of the IXTEX code passed in by the author, which is partially expanded.
Thus, everything is in place for \plmac@write@perl@i to send its argument to
Perl and read back the (BKTEX) result.

Because all of perltex.sty’s protocol processing is encapsulated within
\plmac@write@perl@i, this is the only macro that strictly requires perltex.pl.
Consequently, we wrap the entire macro definition within a check for perltex.pl.

194 \ifplmac@have@perltex
195 \newcommand{\plmac@write@perl@i}[1]{%

The first step is to write argument #1 to \plmac@tofile:

196 \immediate\openout\plmac@outfile=\plmac@tofile\relax
197 \let\protect=\noexpand

198 \def\begin{\noexpand\begin}y,

199 \def\end{\noexpand\end}/,

200 \immediate\write\plmac@outfile{#1}%

201 \immediate\closeout\plmacQoutfile

(In the future, it might be worth redefining \def, \edef, \gdef, \xdef, \let, and
maybe some other control sequences as “\noexpand(control sequence)\noexpand”
so that \write doesn’t try to expand an undefined control sequence.)

We’re now finished using #1 so we can end the group begun by
\plmac@urite@perl, thereby resetting each character’s category code back to its
previous value.

202 \endgroup

Continuing the protocol illustrated in Figure 4, we create a zero-byte

\plmac@toflag in order to notify perltex.pl that it’s now safe to read

\plmac@tofile.
203 \immediate\openout\plmac@outfile=\plmac@toflag\relax
204 \immediate\closeout\plmac@outfile

To avoid reading \plmac@fromfile before perltex.pl has finished writing it

we must wait until perltex.pl creates \plmac@fromflag, which it does only after

27

it has written \plmac@fromfile.

205 \plmac@await@existence\plmac@fromflag

At this point, \plmac@fromfile should contain valid I¥TEX code. However, we
defer inputting it until we the very end. Doing so enables recursive and mutually
recursive invocations of PerlTEX macros.

Because TEX can’t delete files we require an additional X TEX-to-Perl synchro-
nization step. For convenience, we recycle \plmac@tofile as a synchronization
file rather than introduce yet another flag file to complement \plmac@toflag,
\plmac@fromflag, and \plmac@doneflag.

206 \immediate\openout\plmac@outfile=\plmac@tofile\relax
207 \immediate\closeout\plmac@outfile
208 \plmac@await@existence\plmac@doneflag

The only thing left to do is to \input and evaluate \plmac@fromfile, which
contains the ITEX output from the Perl subroutine.

209 \input\plmac@fromfile\relax
210 }

\plmac@urite@perl@i The foregoing code represents the “real” definition of \plmac@write@perl@i. For
the user’s convenience, we define a dummy version of \plmac@write@perl®@i so
that a document which utilizes perltex.sty can still compile even if not built us-
ing perltex.pl. All calls to macros defined with \perl[re|newcommand and all in-
vocations of environments defined with \perl|re|newenvironment are replaced
with “”. A minor complication is that text can’t be inserted before
the \begin{document}. Hence, we initially define \plmac@write@perl@i as a do-
nothing macro and redefine it as “\fbox{Per1\TeX}” at the \begin{document}.

211 \else

212 \newcommand{\plmac@write@perl@i}[1]{\endgroup}

\plmac@show@placeholder There’s really no point in outputting a framed “PerlTEX” when a macro is defined
and when it’s used. \plmac@show@placeholder checks the first character of the
protocol header. If it’s “D” (DEF), nothing is output. Otherwise, it’ll be “U” (USE)
and “PerlTEX” will be output.

213 \gdef\plmac@show@placeholder#1#2\Q@empty{’
214 \ifx#1D\relax

215 \endgroup

28

216 \else

217 \endgroup

218 \fbox{Perl1\TeX}
219 \fi

220 }h

221 \AtBeginDocument{},

222 \renewcommand{\plmac@uwrite@perl@i}[1]{Y%
223 \plmac@show@placeholder#1\Q@empty

224 Yh

225 }

226 \fi

3.2 perltex.pl

perltex.pl is a wrapper script for latex (or any other KTEX compiler). It
sets up client-server communication between KTEX and Perl, with IATEX as the
client and Perl as the server. When a KTEX document sends a piece of Perl
code to perltex.pl (with the help of perltex.sty, as detailed in Section 3.1),
perltex.pl executes it within a secure sandbox and transmits the resulting I TEX

code back to the document.

3.2.1 Header comments

Because perltex.pl is generated without a DocStrip preamble or postamble we

have to manually include the desired text as Perl comments.

227 #! /usr/bin/env perl

228

229 HHHIHHHFHHHEEHHEHERHHEEEHHEEEHHEEEHEEEEHEEEE R
230 # Prepare a LaTeX run for two-way communication with Perl #
231 # By Scott Pakin <scott+pt@pakin.org> #
232 ##HHEHEHHEHEHHBHEHHBHEHHBEEHHBHEHHBEEHHEBHEHHEBEEHHEEE R
233

234 #-- -—= e -—= -—=
235 # This is file ‘perltex.pl’,

236 # generated with the docstrip utility.

237 #

238 # The original source files were:

29

240 # perltex.dtx (with options: ‘perltex’)
242 # This is a generated file.
244 # Copyright (C) 2007 Scott Pakin <scott+pt@pakin.org>

246 # This file may be distributed and/or modified under the conditions
247 # of the LaTeX Project Public License, either version 1.3c of this
248 # license or (at your option) any later version. The latest

249 # version of this license is in:
251 # http://wuw.latex-project.org/lppl.txt

253 # and version 1.3c or later is part of all distributions of LaTeX

254 # version 2006/05/20 or later.

3.2.2 Top-level code evaluation

In previous versions of perltex.pl, the —-nosafe option created and ran code
within a sandbox in which all operations are allowed (via Opcode: : full_opset()).
Unfortunately, certain operations still fail to work within such a sandbox. We
therefore define a top-level “non-sandbox”, top_level_eval(), in which to exe-
cute code. top_level_eval() merely calls eval() on its argument. However, it
needs to be declared top-level and before anything else because eval() runs in

the lexical scope of its caller.

257 sub top_level_eval ($)
258 {
259 return eval $_[0];

260

3.2.3 Perl modules and pragmas

We use Safe and Opcode to implement the secure sandbox, Getopt: :Long and

Pod: :Usage to parse the command line, and various other modules and pragmas

30

$latexprog
$runsafely
Opermittedops

$usepipe

$progname
$jobname
$toperl
$fromperl
$toflag
$fromflag
$doneflag
$logfile

$pipe

for miscellaneous things.

261 use Safe;

262 use Opcode;

263 use Getopt::Long;
264 use Pod::Usage;

265 use File::Basename;
266 use Fcntl;

267 use POSIX;

268 use warnings;

269 use strict;

3.2.4 Variable declarations

With use strict in effect, we need to declare all of our variables. For clarity, we
separate our global-variable declarations into variables corresponding to command-

line options and other global variables.

Variables corresponding to command-line arguments

$latexprog is the name of the BTEX executable (e.g., “latex”). If $runsafely
is 1 (the default), then the user’s Perl code runs in a secure sandbox; if it’s O,
then arbitrary Perl code is allowed to run. @permittedops is a list of features
made available to the user’s Perl code. Valid values are described in Perl’s Opcode
manual page. perltex.pl’s default is a list containing only :browse. $usepipe
is 1 if perltex.pl should attempt to use a named pipe for communicating with
latex or 0 if an ordinary file should be used instead.

270 my $latexprog;

271 my $runsafely = 1;

272 my @permittedops;

273 my $usepipe = 1;

Filename variables

$progname is the run-time name of the perltex.pl program. $jobname is the
base name of the user’s .tex file, which defaults to the TEX default of texput.
$toperl defines the filename used for BTEX-to-Perl communication. $fromperl

defines the filename used for Perl-to-I#TEX communication. $toflag is the name

31

Q@latexcmdline
$styfile
O@macroexpansions
$sandbox
$sandbox_eval

$latexpid

$pipestring

of a file that will exist only after I¥TEX creates $tofile. $fromflag is the name
of a file that will exist only after Perl creates $fromfile. $doneflag is the name
of a file that will exist only after Perl deletes $fromflag. $logfile is the name
of a log file to which perltex.pl writes verbose execution information. $pipe is
the name of a Unix named pipe (or ordinary file on operating systems that lack
support for persistent named pipes or in the case that $usepipe is set to 0) used
to convince the latex process to yield control of the CPU.

274 my $progname = basename $0;

275 my $jobname = "texput";

276 my $toperl;

277 my $fromperl;

278 my $toflag;

279 my $fromflag;

280 my $doneflag;

281 my $logfile;

282 my $pipe;

Other global variables

@latexcmdline is the command line to pass to the W TEX executable. $styfile is
the string noperltex.sty if perltex.pl is run with —-makesty, otherwise unde-
fined. @macroexpansions is a list of PerlTEX macro expansions in the order they
were encountered. It is used for creating a noperltex.sty file when --makesty
is specified. $sandbox is a secure sandbox in which to run code that appeared
in the IMTEX document. $sandbox_eval is a subroutine that evalutes a string
within $sandbox (normally) or outside of all sandboxes (if -—nosafe is specified).
$latexpid is the process ID of the latex process.

283 my @latexcmdline;

284 my $styfile;

285 my @macroexpansions;

286 my $sandbox = new Safe;

287 my $sandbox_eval;

288 my $latexpid;

$pipestring is a constant string to write to the $pipe named pipe (or file) at each
ITREX synchronization point. Its particular definition is really a bug workaround
for XIEX. The current version of XfIEX reads the first few bytes of a file to

32

$firstcmd

$option

determine the character encoding (UTF-8 or UTF-16, big-endian or little-endian)
then attempts to rewind the file pointer. Because pipes can’t be rewound, the effect
is that the first two bytes of $pipe are discarded and the rest are input. Hence,
the “\endinput” used in prior versions of PerlTEX inserted a spurious “ndinput”
into the author’s document. We therefore define $pipestring such that it will not

interfere with the document even if the first few bytes are discarded.

289 my $pipestring = "\U\%\%\%\/ Generated by $progname\n\\endinput\n";

3.2.5 Command-line conversion

In this section, perltex.pl parses its own command line and prepares a command

line to pass to latex.

Parsing perltex.pl’s command line We first set $latexprog to be the con-
tents of the environment variable PERLTEX or the value “latex” if PERLTEX is
not specified. We then use Getopt: :Long to parse the command line, leaving any
parameters we don’t recognize in the argument vector (@ARGV) because these are

presumably latex options.

290 $latexprog = $ENV{"PERLTEX"} || "latex";

291 Getopt: :Long: :Configure("require_order", "pass_through");
292 GetOptions("help" => sub {pod2usage(-verbose => 1)},
293 "latex=s" => \$latexprog,

294 "safe!" => \$runsafely,

The following two options are undocumented because the defaults should always
suffice. We're not yet removing these options, however, in case they turn out to

be useful for diagnostic purposes.

295 "pipe!" => \$usepipe,

296 "synctext=s" => \$pipestring,

297 "makesty" => sub {$styfile = "noperltex.sty"},
298 "permit=s" => \@permittedops) || pod2usage(2);

Preparing a BTEX command line

We start by searching @ARGV for the first string that does not start with “-” or

“\”. This string, which represents a filename, is used to set $jobname.

299 @latexcmdline = QARGV;

33

$separator

300 my $firstcmd = O;
301 for ($firstcmd=0; $firstcmd<=$#latexcmdline; $firstcmd++) {

302 my $option = $latexcmdline[$firstcmd];

303 next if substr($option, 0, 1) eq "-";

304 if (substr ($option, 0, 1) ne "\\") {

305 $jobname = basename $option, ".tex" ;

306 $latexcmdline[$firstemd] = "\\input $option";
307 }

308 last;

309 }

310 push @latexcmdline, "" if $#latexcmdline==-1;

To avoid conflicts with the code and parameters passed to Perl from ITEX (see Fig-
ure 1 on page 14 and Figure 2 on page 15) we define a separator string, $separator,
containing 20 random uppercase letters.

311 my $separator = "";

312 foreach (1 .. 20) {

313 $separator .= chr(ord("A") + rand(26));

314 }

Now that we have the name of the KTEX job ($jobname) we can assign
$toperl, $fromperl, $toflag, $fromflag, $doneflag, $logfile, and $pipe in

terms of $jobname plus a suitable extension.

315 $toperl = $jobname . ".topl";
316 $fromperl = $jobname . ".frpl";
317 $toflag = $jobname . ".tfpl";
318 $fromflag = $jobname . ".ffpl";
319 $§doneflag = $jobname . ".dfpl";
320 $logfile = $jobname . ".lgpl";
321 $pipe = $jobname . ".pipe";

We now replace the filename of the .tex file passed to perltex.pl with a
\definition of the separator character, \definitions of the various files, and the

original file with \input prepended if necessary.

322 $latexcmdline [$firstcmd] =

323 sprintf ’\makeatletter’ . ’\def’s{/s}’ x 7 . ’\makeatotheris’,
324 ’\plmac@tag’, $separator,
325 ’\plmac@tofile’, $toperl,

34

326 ’\plmac@fromfile’, $fromperl,

327 ’\plmac@toflag’, $toflag,

328 ’\plmac@fromflag’, $fromflag,
329 ’\plmac@doneflag’, $doneflag,
330 ’\plmac@pipe’, $pipe,

331 $latexcmdline[$firstcmd];

3.2.6 Launching BTEX

We start by deleting the $toperl, $fromperl, $toflag, $fromflag, $doneflag,
and $pipe files, in case any of these were left over from a previous (aborted) run.
We also create a log file ($logfile), a named pipe ($pipe)—or a file containing
only \endinput if we can’t create a named pipe—and, if $styfile is defined, a
KTEX 2¢ style file. As @1atexcmdline contains the complete command line to pass
to latex we need only fork a new process and have the child process overlay itself
with latex. perltex.pl continues running as the parent.

Note that here and elsewhere in perltex.pl, unlink is called repeatedly until
the file is actually deleted. This works around a race condition that occurs in some
filesystems in which file deletions are executed somewhat lazily.

332 foreach my $file ($toperl, $fromperl, $toflag, $fromflag, $doneflag, $pipe) {
333 unlink $file while -e $file;

334 }

335 open (LOGFILE, ">$logfile") || die "open(\"$logfile\"): $!\n";

336 if (defined $styfile) {

337 open (STYFILE, ">$styfile") || die "open(\"$styfile\"): $!\n";

338 }

339 if (!$usepipe || 'eval {mkfifo($pipe, 0600)}) {
340 sysopen PIPE, $pipe, O_WRONLY|O_CREAT, 0755;
341 print PIPE $pipestring;

342 close PIPE;

343 $usepipe = 0;

344 }

345 defined ($latexpid = fork) || die "fork: $!\n";
346 unshift @latexcmdline, $latexprog;
347 if (!$latexpid) {

348 exec {$latexcmdline[0]} @latexcmdline;

35

349 die "exec(’@latexcmdline’): $!\n";

350 }

3.2.7 Preparing a sandbox

perltex.pl uses Perl’s Safe and Opcode modules to declare a secure sandbox
($sandbox) in which to run Perl code passed to it from I¥TEX. When the sandbox
compiles and executes Perl code, it permits only operations that are deemed safe.
For example, the Perl code is allowed by default to assign variables, call functions,
and execute loops. However, it is not normally allowed to delete files, kill pro-
cesses, or invoke other programs. If perltex.pl is run with the --nosafe option
we bypass the sandbox entirely and execute Perl code using an ordinary eval()

statement.

351 if ($runsafely) {

352 @permittedops=(":browse") if $#permittedops==-1;
353 $sandbox->permit_only (@permittedops);

354 $sandbox_eval = sub {$sandbox->reval ($_[0])};
355 }

356 else {

357 $sandbox_eval = \&top_level_eval;

358 }

3.2.8 Communicating with B TEX

The following code constitutes perltex.pl’s main loop. Until latex exits, the
loop repeatedly reads Perl code from IXTEX, evaluates it, and returns the result

as per the protocol described in Figure 4 on page 25.

359 while (1) {

$awaitexists We define a local subroutine $awaitexists which waits for a given file to exist. If

latex exits while $awaitexists is waiting, then perltex.pl cleans up and exits,

too.

360 my $awaitexists = sub {

361 while (!-e $_[01) {

362 sleep O;

363 if (waitpid($latexpid, &WNOHANG)==-1) {

364 foreach my $file ($toperl, $fromperl, $toflag,

36

$entirefile

$optag
$macroname

Qotherstuff

365 $fromflag, $doneflag, $pipe) {

366 unlink $file while -e $file;

367 }

368 undef $latexpid;

369 exit O;

370 }

371 }

372 };

Wait for $toflag to exist. When it does, this implies that $toperl must exist as
well. We read the entire contents of $toperl into the $entirefile variable and
process it. Figures 1 and 2 illustrate the contents of $toperl.

373 $awaitexists->($toflag) ;

374 my $entirefile;

375 {

376 local $/ = undef;

377 open (TOPERL, "<$toperl") || die "open($toperl): $!\n";

378 $entirefile = <TOPERL>;

379 close TOPERL;

380 }

We split the contents of $entirefile into an operation tag (either DEF, USE,
or RUN), the macro name, and everything else (@otherstuff). If $optag is DEF
then Qotherstuff will contain the Perl code to define. If $optag is USE then
Q@otherstuff will be a list of subroutine arguments. If $optag is RUN then
@otherstuff will be a block of Perl code to run.

381 my ($optag, $macroname, Qotherstuff) =

382 map {chomp; $_} split "$separator\n", $entirefile;

We clean up the macro name by deleting all leading non-letters, replacing all
subsequent non-alphanumerics with “_”, and prepending “latex_” to the macro
name.

383 $macroname =~ s/~ ["A-Za-z]+//;
384 $macroname =" s/\W/_/g;
385 $macroname = "latex_" . $macroname;

If we’re calling a subroutine, then we make the arguments more palatable to

Perl by single-quoting them and replacing every occurrence of “\” with “\\” and

37

$perlcode

every occurrence of “’” with “\’”.

386 if ($optag eq "USE") {

387 foreach (@otherstuff) {

388 s/\\/\\\\/g;

389 s/\N/\N\\ /g;

390 $_ = "oy

391 }

392 }

There are three possible values that can be assigned to $perlcode. If $optag

is DEF, then $perlcode is made to contain a definition of the user’s subroutine,
named $macroname. If $optag is USE, then $perlcode becomes an invocation of
$macroname which gets passed all of the macro arguments. Finally, if $optag is
RUN, then $perlcode is the unmodified Perl code passed to us from perltex.sty.
Figure 5 presents an example of how the following code converts a Perl TEX macro
definition into a Perl subroutine definition and Figure 6 presents an example of
how the following code converts a PerlTEX macro invocation into a Perl subroutine

invocation.

393 my $perlcode;
394 if ($optag eq "DEF") {

395 $perlcode =

396 sprintf "sub %s {ks}\n",
397 $macroname, $otherstuff[0];
398 }

XTEX: | \perlnewcommand{\mymacro} [2]{%
sprintf "Isn’t $_[0] %s $_[117\n",

$_ [0] >=$_ [1] ? ||>=|l . l|<|l
}
Perl: sub latex_mymacro {
sprintf "Isn’t $_[0] %s $_[1]17\n",
$_ [0] >=$_ [1] '? |I>=Il . ll<ll
}

9 5: Conversion from BTEX to Perl (subroutine definition)

38

ITEX: | \mymacro{12}{34}

4

Perl: ’ latex_mymacro (’12°, ’34’);

9 6: Conversion from BTEX to Perl (subroutine invocation)

399 elsif ($optag eq "USE") {

400 $perlcode = sprintf "Ys (%s);\n", $macroname, join(", ", Qotherstuff);
401 }

402 elsif ($optag eq "RUN") {

403 $perlcode = $otherstuff[0];

404 }

405 else {

406 die "${progname}: Internal error -- unexpected operation tag \"$optag\"\n";
407 }

Log what we’re about to evaluate.

408 print LOGFILE "#" x 31, " PERL CODE ", "#" x 32, "\n";
409 print LOGFILE $perlcode, "\n";

$result We're now ready to execute the user’s code using the $sandbox_eval function.
$msg If a warning occurs we write it as a Perl comment to the log file. If an error oc-
curs (i.e., $@ is defined) we replace the result ($result) with a call to BTEX 2¢’s
\PackageError macro to return a suitable error message. We produce one error

message for sandbox policy violations (detected by the error message, $@, con-

taining the string “trapped by”) and a different error message for all other er-

rors caused by executing the user’s code. For clarity of reading both warning and

error messages, we elide the string “at (eval (number)) line (number)”. Once

$result is defined—as either the resulting IATEX code or as a \PackageError—

we store it in @macroexpansions in preparation for writing it to noperltex.sty

(when perltex.pl is run with --makesty).

410 undef $_;

411 my $result;

412 {

413 my $warningmsg;

39

414 local $SIG{__WARN__} =

415 sub {chomp ($warningmsg=$_[0]); return 0};

416 $result = $sandbox_eval->($perlcode) ;

417 if (defined $warningmsg) {

418 $warningmsg =~ s/at \(eval \d+\) line \d+\W+//;

419 print LOGFILE "# ===> $warningmsg\n\n";

420 }

421 }

422 $result = "" if !$result || $optag eq "RUN";

423 if ($@) {

424 my $msg = $0;

425 $msg =" s/at \(eval \d+\) line \d+\W+//;

426 $msg =~ s/\s+/ /;

427 $result = "\\PackageError{perltex}{$msgl}t";

428 my G@helpstring;

429 if ($msg =~ /\btrapped by\b/) {

430 @Ghelpstring =

431 ("The preceding error message comes from Perl. Apparently,",
432 "the Perl code you tried to execute attempted to perform an",
433 "‘unsafe’ operation. If you trust the Perl code (e.g., if",
434 "you wrote it) then you can invoke perltex with the --nosafe",
435 "option to allow arbitrary Perl code to execute.",

436 "Alternatively, you can selectively enable Perl features",
437 "using perltex’s --permit option. Don’t do this if you don’t",
438 "trust the Perl code, however; malicious Perl code can do a",
439 "world of harm to your computer system.");

440 }

441 else {

442 QGhelpstring =

443 ("The preceding error message comes from Perl. Apparently,",
444 "there’s a bug in your Perl code. You’ll need to sort that",
445 "out in your document and re-run perltex.");

446 }

447 my $helpstring = join ("\\MessageBreak\n", @helpstring);

448 $helpstring =~ s/\. /.\\space\\space /g;

449 $result .= "{$helpstringl}";

450 }

40

451 push O@macroexpansions, $result if defined $styfile && $optag eq "USE";

Log the resulting I#TEX code.

452 print LOGFILE "%" x 30, " LATEX RESULT ", "%" x 30, "\n";
453 print LOGFILE $result, "\n\n";

We add \endinput to the generated I#TEX code to suppress an extraneous

end-of-line character that TEX would otherwise insert.
454 $result .= ’\endinput’;

Continuing the protocol described in Figure 4 on page 25 we now write $result
(which contains either the result of executing the user’s or a \PackageError) to
the $fromperl file, delete $toflag, $toperl, and $doneflag, and notify IATEX
by touching the $fromflag file. As a performance optimization, we also write

\endinput into $pipe to wake up the latex process.

455 open (FROMPERL, ">$fromperl") || die "open($fromperl): $!\n";
456 syswrite FROMPERL, $result;
457 close FROMPERL;

458 unlink $toflag while -e $toflag;
459 unlink $toperl while -e $toperl;
460 unlink $doneflag while -e $doneflag;

461 open (FROMFLAG, ">$fromflag") || die "open($fromflag): $!\n";
462 close FROMFLAG;

463 if (open (PIPE, ">$pipe")) {

464 print PIPE $pipestring;
465 close PIPE;
466 }

We have to perform one final I¥TEX-to-Perl synchronization step. Otherwise,
a subsequent \perl[re|newcommand would see that $fromflag already exists and
race ahead, finding that $fromperl does not contain what it’s supposed to.
467 $awaitexists->($toperl);
468 unlink $fromflag while -e $fromflag;
469 open (DONEFLAG, ">$doneflag") || die "open($doneflag): $!\n";
470 close DONEFLAG;

Again, we awaken the latex process, which is blocked on $pipe.

471 if (open (PIPE, ">$pipe")) {

41

472 print PIPE $pipestring;
473 close PIPE;
474 }

475 }

3.2.9 Final cleanup

If we exit abnormally we should do our best to kill the child latex process so that

it doesn’t continue running forever, holding onto system resources.

476 END {

477 close LOGFILE;

478 if (defined $latexpid) {
479 kill (9, $latexpid);
480 exit 1;

481 }

482

483 if (defined $styfile) {

This is the big moment for the —~-makesty option. We’ve accumulated the output
from each PerlTEX macro invocation into @macroexpansions, and now we need
to produce a noperltex.sty file. We start by generating a boilerplate header in
which we set up the package and load both perltex.sty and filecontents.sty.

484 print STYFILE <<"STYFILEHEADER1";

485 \\NeedsTeXFormat{LaTeX2e} [1999/12/01]

486 \\ProvidesPackage{noperltex}

487 [2007/09/29 v1.4 Perl-free version of PerlTeX specific to $jobname.tex]
488 STYFILEHEADER1

489 ;

490 print STYFILE <<’STYFILEHEADER2’;

491 \RequirePackage{filecontents}

492

493 %, Suppress the "Document must be compiled using perltex" error from perltex.
494 \let\noperltex@PackageError=\PackageError

495 \renewcommand{\PackageError}[3]{}

496 \RequirePackage{perltex}

497 \let\PackageError=\noperltex@PackageError

498

42

\plmac@macro@invocation@num noperltex.sty works by redefining the \plmac@show@placeholder macro, which
\plmac@show@placeholder normally outputs a framed “PerlTEX” when perltex.pl isn’t running, changing

it to input noperltex-(number).tex instead (where (number) is the contents
of the \plmac@macro@invocation@num counter). Each noperltex-({number).tex
file contains the output from a single invocation of a Perl TEX-defined macro.
499 % Modify \plmac@show@placeholder to input the next noperltex-*.tex file
500 % each time a PerlTeX-defined macro is invoked.
501 \newcount\plmac@macro@invocation@num
502 \gdef\plmac@show@placeholder#1#2\@empty{’
503 \ifx#1U\relax

504 \endgroup

505 \advance\plmac@nacro@invocation@num by 1\relax

506 \global\plmac@macro@invocation@uum=\plmac@macro@invocation@num
507 \input{noperltex-\the\plmac@macro@invocation@num.tex}’

508 \else

509 \endgroup

510 \fi

511 }

512 STYFILEHEADER2

513 ;

Finally, we mneed to have noperltex.sty generate each of the
noperltex—(number).tex files. For each element of @macroexpansions we

use one filecontents environment to write the macro expansion verbatim to a

file.

514 foreach my $e (0 .. $#macroexpansions) {

515 print STYFILE "\n";

516 printf STYFILE "%J), Invocation #%d\n", 1+$e;

517 printf STYFILE "\\begin{filecontents}{noperltex-%d.tex}\n", 1+$e;
518 print STYFILE $macroexpansions[$e], "\\endinput\n";
519 print STYFILE "\\end{filecontents}\n";

520 }

521 print STYFILE "\\endinput\n";

522 close STYFILE;

523 }

524

525 exit O;

43

526
527
528 __END_

3.2.10 perltex.pl POD documentation

perltex.pl includes documentation in Perl’s POD (Plain Old Documentation)
format. This is used both to produce manual pages and to provide usage informa-
tion when perltex.pl is invoked with the —-help option. The POD documenta-
tion is not listed here as part of the documented perltex.pl source code because
it contains essentially the same information as that shown in Section 2.2. If you're

curious what the POD source looks like then see the generated perltex.pl file.

3.3 Porting to other languages

Perl is a natural choice for a XTEX macro language because of its excellent support
for text manipulation including extended regular expressions, string interpolation,
and “here” strings, to name a few nice features. However, Perl’s syntax is unusual
and its semantics are rife with annoying special cases. Some users will therefore
long for a (some-language-other-than-Perl) TEX. Fortunately, porting PerlTEX to
use a different language should be fairly straightforward. perltex.pl will need to
be rewritten in the target language, of course, but perltex.sty modifications will
likely be fairly minimal. In all probability, only the following changes will need to

be made:

e Rename perltex.sty and perltex.pl (and choose a package name other
than “PerlTEX”) as per the PerlTEX license agreement (Section 4).

e In your replacement for perltex.sty, replace all occurrences of “plmac”

with a different string.

e In your replacement for perltex.pl, choose different file extensions for the

various helper files.

The importance of these changes is that they help ensure version consistency
and that they make it possible to run {some-language-other-than-Perl) TgX along-
side Perl TEX, enabling multiple programming languages to be utilized in the same
ETEX document.

44

Al 4 A License agreement

Copyright (©) 2007 Scott Pakin <scott+pt@pakin.org>

These files may be distributed and/or modified under the conditions of the KTEX
Project Public License, either version 1.3c of this license or (at your option) any
later version. The latest version of this license is in http://www.latex-project.
org/lppl.txt and version 1.3c or later is part of all distributions of EXTEX version
2006/05/20 or later.

Acknowledgments

Thanks to Andrew Mertz for writing the first draft of the code that produces the
PerlTEX-free noperltex.sty style file and for testing the final draft; to Andrei
Alexandrescu for providing a few bug fixes; and to Nick Andrewes for identifying
and helping diagnose a problem running PerlTEX with XfIEX and to Jonathan
Kew for suggesting a workaround. Also, thanks to the many people who have
sent me fan mail or submitted bug reports, documentation corrections, or feature
requests. (The \perldo macro and the —-makesty option were particularly popular

requests.)

45

http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

	서론
	사용법
	펄 매크로 정의하기와 재정의하기
	perltex.pl 실행하기

	Implementation
	perltex.sty
	Package initialization
	Defining Perl macros
	Defining Perl environments
	Executing top-level Perl code
	Communication between LaTeX and Perl
	perltex.pl
	Header comments
	Top-level code evaluation
	Perl modules and pragmas
	Variable declarations
	Command-line conversion
	Launching LaTeX
	Preparing a sandbox
	Communicating with LaTeX
	Final cleanup
	perltex.pl POD documentation

	Porting to other languages

	License agreement

