KTUGFaq

KTUG FAQ

·Î±×ÀÎ:
ºñ¹Ð¹øÈ£:
°¡ÀÔ
You will overcome the attacks of jealous associates.
FrontPage › SymPy
SymPy´Â Mathematic³ª Maple¿¡¼­ ÇϵíÀÌ ½Éº¼ °è»êÀ» Áö¿øÇÏ´Â Python ¸ðµâÀÌ´Ù.
<!> ÀÌ ¸ðµâÀÇ Printing ±â´ÉÀ» ÀÌ¿ëÇϸé LaTeX ¾ç½ÄÀÇ ¼öÇÐ½Ä Ãâ·Â¹°À» ¾òÀ» ¼ö ÀÖ´Ù.

<!> SymPy¿Í ÇÔ²² ¼³Ä¡Çϸé ÁÁÀº ¼öÇÐ °è»ê Áö¿ø ¸ðµâ



Python ¿¹Á¦: latexdemo.py

from sympy import *
from sympy.abc import x

print( latex(x**2) )
print( latex(1/x) )
print( latex(Integral(x**2, x)) )
print( latex(integrate(x**2, x)) )
print( latex((1/cos(x)).series(x, 0, 6)) )

½ÇÇà °á°ú:
${x}^{2}$
$\frac{1}{x}$
$\int {x}^{2}\,dx$
$\frac{1}{3} {x}^{3}$
$1 + \frac{1}{2} {x}^{2} + \frac{5}{24} {x}^{4} + \operatorname{\mathcal{O}}\left({x}^{6}\right)$


${x}^{2}$

$\frac{1}{x}$

$\int {x}^{2}\,dx$

$\frac{1}{3} {x}^{3}$

$1 + \frac{1}{2} {x}^{2} + \frac{5}{24} {x}^{4} + \operatorname{\mathcal{O}}\left({x}^{6}\right)$



ÀÌ °Í Âü Àç¹Ì Àֳ׿ä. ÁÁÀº Á¤º¸ °¨»çÇÕ´Ï´Ù.

^
Valid XHTML 1.0! Valid CSS! powered by MoniWiki
last modified 2008-12-29 10:18:57
Processing time 0.0310 sec