\newcommand{\bdm}{\begin{displaymath}} \newcommand{\edm}{\end{displaymath}} \newcommand{\beq}{\begin{equation*}\begin{split}} \newcommand{\eeq}{\end{equation*}}ó·³ µð½ºÇ÷¹ÀÌ Çü ¼ö½Ä ¸í·É¾î¸¦ »õ·Î Á¤ÀÇÇÏ¿© ¾²´Â °æ¿ì¸¦ º¼ ¼ö ÀÖ´Â µ¥ ÀÌ·¸°Ô Çϸé "delimiter ¦ã±â" ±â´É(WinEdtTip/Delimiters°ü¸®)ÀÌ µèÁö ¾Ê´Â´Ù. ±×·¡¼ ¿À·ù°¡ »ý°åÀ» ¶§ ¿À·ù¸¦ ã¾Æ°¡±â°¡ Èûµé ¶§µµ ÀÖ´Ù. ¾î¶² ¶§´Â ¿À·ù ¸Þ½ÃÁö ´ÙÀ½¿¡¼ Enter¸¦ Ä¡¸é ¹Ù·Î ¼Ò½º ÆÄÀÏÀÇ ¸¶Áö¸· \end{document}·Î °¡´Â ¼öµµ ÀÖ´Ù. ƯÈ÷ À§ÀÇ ¿¹¿Í °°ÀÌ ¼ö½Ä ȯ°æÀÇ ¸í·É¾î¸¦ »õ·Î Á¤ÀÇÇÑ °æ¿ì \beq ... \end{split}\eeq·Î ¾²´Â °ÍÀ» ±ô¹Ú ÀØ°í \beq ... \eeq¸¸ ¾²¸é split ȯ°æ ¼Ó¿¡ µé¾î°¬´Ù°¡ ³ª¿ÀÁö ¾Ê¾Ò´Âµ¥ equation* ȯ°æÀ» ´Ý¾Ò¹ö·È±â ¶§¹®¿¡
Runaway argument? \plus _{x\in X} \eeq ! Paragraph ended before \split was complete. <to be read again> \par l.15¿Í °°ÀÌ ¿À·ù ¸Þ½ÃÁö°¡ ³ªÅ¸³ª¸é¼ ´õ ÀÌ»ó ÄÄÆÄÀÏÇÏÁö ¸øÇÏ´Â °æ¿ì°¡ ÀÖ´Ù.
$...$, \(...\), $$...$$, \[...\]µîÀ¸·Î ÀԷµǾî ÀÖ´Â ¼ö½Ä ¸ðµå¸¦ equation ȯ°æ (¶Ç´Â equation* ȯ°æ)[1]À¸·Î ¹Ù²Ù°Å³ª ÇÑ ÇàÀ¸·Î µÈ ¼ö½ÄÀÌ ³Ê¹« ±æ¾î¼ split ȯ°æÀ̳ª aligned ȯ°æÀ» ³Ö¾î µÎ Çà ¶Ç´Â ¼¼ ÇàÀ¸·Î ³ª´«´Ù°Å³ª, LaTeXÀÇ È¯°æÀÎ eqnarray ȯ°æ(¶Ç´Â eqnarray* ȯ°æ)À» AMS-LaTeXÀÇ È¯°æÀÎ align ȯ°æ (¶Ç´Â align* ȯ°æ, alignat ȯ°æ, alignat* ȯ°æ, flalign ȯ°æ, flalign* ȯ°æ)À¸·Î ¼öÀÛ¾÷À¸·Î ¹Ù²Ù´Â °ÍÀº ¸Å¿ì ½Å°æ¾²ÀÌ´Â ÀÏÀÌ´Ù. ÀÌ °ÍÀ» WinEdtÀÇ ±¸ÀÌ(GUI) ´ÜÃ߸¦ ÀÌ¿ëÇÏ¸é ½±°Ô ¹Ù²Ü ¼ö ÀÖ´Ù. ¸î°¡Áö ¿ä·ÉÀÌ ÇÊ¿äÇÏ´Ù.
Now, define a relation $ \eta_1 $ as: \begin{center} $ \eta_1=\sigma \cap \rho_1. $ \end{center}·Î µÈ °ÍÀ» ¼ö½Ä ȯ°æÀ¸·Î ¹Ù²Ù·Á¸é "\begin{center} $" ¿Í "$ \end{center}"¸¦ Áö¿ö¹ö¸®¸é
Now, define a relation $ \eta_1 $ as: \eta_1=\sigma \cap \rho_1.·Î º¯ÇÑ´Ù. ¿©±â¼ "\eta_1=\sigma \cap \rho_1."¸¸ ¼±ÅÃ(¼±ÅÃµÈ ºÎºÐÀº ÆĶû ¹ÙÅÁÀÌ µÊ)ÇÏ°í ¸Þ´º¿¡¼ Insert -> Environments -> Equation* ¸¦ ã¾Æ°¡¼ Ŭ¸¯Çϸé
Now, define a relation $ \eta_1 $ as: \begin{equation*} \eta_1=\sigma \cap \rho_1. \end{equation*}·Î º¯ÇÑ´Ù. ¸¸¾à ¼ö½Ä ³¡¿¡
\tag{since $S$ is quasi-inversive}¸¦ ´Þ¸é ¼ö½ÄÀÇ ¿ÞÂÊ °¡ÀåÀÚ¸®(AMSÀÇ Å¬·¡½º¿¡¼ ¿É¼Ç ¾øÀÌ, article Ŭ·¡½º¿¡¼´Â leqno ¿É¼ÇÀ» ½èÀ» ¶§) ¶Ç´Â ¿À¸¥ÂÊ °¡ÀåÀÚ¸®(article Ŭ·¡½º¿¡¼ ¿É¼Ç ¾øÀÌ, AMSÀÇ Å¬·¡½º¿¡¼´Â reqno ¿É¼ÇÀ» ½èÀ» ¶§)¿¡
\setlength{\mathindent}{40pt}¿Í °°ÀÌ ÁÜÀ¸·Î Á¶ÀýÇÒ ¼ö ÀÖ´Ù. See 173
\begin{equation}\label{eq01} \begin{split} g(A) & = g_1(A) + g_2(A) \\[5pt]%´ÙÀ½ ÁÙ°úÀÇ °£°Ý 5pt¸¦ ´õÇÒ ¶§ & = \sum_{i=1}^2 g_i(A) \end{split} \end{equation}¿Í °°ÀÌÇϸé ÇØ°áµÈ´Ù.
\begin{equation} \begin{split} x&=a+b \qquad if\ x>0 \\ x&=c \qquad otherwise \\ \end{split} \end{equation}·Î Çϸé
x=a+b if x<0 x=c otherwise·Î ³ª¿É´Ï´Ù. \quad \: °°Àº ½ºÆäÀ̽º¸¦ ³ÖÁö ¾Ê°í if ¿Í otherwise¸¦ Á¤·Ä ½ÃÅ°·Á¸é ¾î¶»°Ô ÇØ¾ß Çϳª¿ä? ÇÑÁÙ¿¡ &¸¦ µÎ°³ ¾²¸é ÄÄÆÄÀÏÇÒ ¶§
!Extra alignment tab has been changed to \cr¶ó´Â ¿¡·¯°¡ ³³´Ï´Ù.
rl rl ...½ÄÀ¸·Î rlÀ» µÇÇ®ÀÌ ÇÕ´Ï´Ù. Áï Ȧ¼ö ¿Àº ¿À¸¥ÂÊ Á¤·Ä, ¦¼ö ¿Àº ¿ÞÂÊ Á¤·ÄÀÌ µË´Ï´Ù. ¸¸¾à ¸Ç ù ¿À» ¿ÞÂÊ Á¤·Ä¿¡¼ ½ÃÀÛÇÏ·Á¸é °¢ ÇàÀÇ ¾Õ¿¡ &À» ³ÖÀ¸¸é µË´Ï´Ù. ´ÙÀ½À» ÄÄÆÄÀÏÇÏ¿© º¸¼¼¿ä.
\documentclass{amsart} \begin{document} \begin{equation} \begin{aligned} &x=a+b &&\textrm{if}\quad x<0 \\ &x=c &&\textrm{otherwise} \end{aligned} \end{equation} \end{document}
A&=&B &=&CµîÀ¸·Î ³ª¿µÇ´Â ¼ö½Ä¿¡ ¸¹ÀÌ ¾´´Ù. ±×¸®°í °¢ ¿ »çÀÌÀÇ °£°Ý(ÅÇ &ÀÌ µé¾î°£°÷)Àº ´Ù¸¥ ¼ö½Ä ȯ°æ¿¡¼ º¸´Ù ¸¹ÀÌ ¹ú¾îÁø´Ù. ±×·¡¼ ¼ö½ÄÀ» ¿ÞÂÊ Á¤·ÄÇÏ·Á¸é °¢ ÇàÀÇ ¸Ó¸®¿¡ µÎ ¹øÀÇ ÅÇ &&À» ³Ö¾î¾ß ÇÑ´Ù. ¶Ç ÀÏ´Ü µÎ ¹øÀÇ ÅÇ &&À» ¸ðµÎ ½èÀ¸¸é ±× ´ÙÀ½Àº ¼öÀÛ¾÷À¸·Î Á¤·Ä½Ãų ¼ö ¹Û¿¡ ¾ø´Ù. ÀÌ¿¡ ¹ÝÇؼ AMS-LaTeX¿¡´Â align ȯ°æ, alignat ȯ°æ, flalign ȯ°æ (¶Ç´Â align* ȯ°æ, alignat* ȯ°æ, flalign* ȯ°æ) µî ´Ù¾çÇÑ È¯°æÀ» °®°í ÀÖ°í °¢ Çà¿¡ ¾µ ¼ö ÀÖ´Â ÅÇ &ÀÇ ¼ýÀÚµµ Á¦ÇÑÀÌ ¾ø´Ù. &À» ¿©·¯ ¹ø ³Ö°Ô µÇ¸é °¢ ¿ÀÇ Á¤·ÄÀº
rl rl ...½ÄÀ¸·Î rlÀ» µÇÇ®ÀÌ µÈ´Ù. Áï Ȧ¼ö ¿Àº ¿À¸¥ÂÊ Á¤·Ä, ¦¼ö ¿Àº ¿ÞÂÊ Á¤·ÄÀÌ µÈ´Ù. ¸¸¾à ¸Ç ù ¿À» ¿ÞÂÊ Á¤·Ä¿¡¼ ½ÃÀÛÇÏ·Á¸é °¢ ÇàÀÇ ¾Õ¿¡ ÅÇ &À» Çϳª ´õ ³ÖÀ¸¸é µÈ´Ù. ¶Ç eqnarray ȯ°æ(¶Ç´Â eqnarray* ȯ°æ)Àº ¼ö½Ä ÇàÀÇ ³¡¿¡ \tag{¼³¸í}À» ³ÖÀ» ¼ö ¾øÁö¸¸ align ȯ°æ (¶Ç´Â align* ȯ°æ)Àº °¢ Çà¿¡ \tag{¼³¸í}À¸·Î (¼³¸í)À» ºÙÀÏ ¼ö ÀÖ´Ù. \tagÀº Ŭ·¡½º ¿É¼Ç¿¡ µû¶ó (¼ö½Ä ¹øÈ£¿Í ÇÔ²²) ¿ÞÂÊ ³¡ ¶Ç´Â ¿À¸¥ÂÊ ³¡¿¡ ºÙ´Â´Ù.
\documentclass{article} \usepackage{amsmath} \usepackage{cases} \begin{document} \begin{equation}\label{} P_{r-j}=\begin{cases} 0& \text{if $r-j$ is odd},\\ r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}. \end{cases} \end{equation} \begin{numcases}{X =} 1 & explanation 1 \\ 2 & explanation 2 \\ ... \\ n & explanation n \end{numcases} \begin{subnumcases}{X =} \begin{aligned} \phi_{\mathcal{PI}} &= \sum_{i=1}^N \phi_i \\ % &= \sum_{i=1}^N \Big[c_bu_i + f_b {1}_{\{u_i\neq0\}}\Big] \end{aligned}\\ \begin{aligned} \phi_{\mathcal{PF}} &= \sum_{i=1}^N \Big[c_su_i(1+r_i) + f_s {1}_{\{u_i(1+r_i)\neq0\}}\Big] \end{aligned} \end{subnumcases} \end{document}
\documentclass{article}% \usepackage{array,arydshln}%For dashed rules \begin{document} \setlength\extrarowheight{2pt}%extra space on row top \renewcommand\arraystretch{1.15}%extra space evenly distributed \setlength\dashlinedash{2pt} \setlength\dashlinegap{2pt} $$ \left[\begin{tabular}{cc:c} $A$ & $B$ & $C$ \\ $X$ & $Y$ & $Z$ \\ \hdashline 100 & 10 & 1 \\ \end{tabular}\right] $$ \end{document}¿Í °°ÀÌ ÀÔ·ÂÇÏ´Â ¼öµµ ÀÖ´Ù. Âü°í: ÀÌ ¼Ò½º ÄÚµå´Â /info/examples/tlc2/¿¡ ÀÖ´Â 5-6-4.ltx ¿Í 5-6-5.ltx ¸¦ Âü°íÇÏ¿© ¸¸µé¾ú´Ù. ¼ö½Ä ¸ðµå ³»¿¡ tabular ȯ°æÀ» ½è´Â µ¥ tabular ȯ°æ ³»´Â ¼ö½Ä ¸ðµå°¡ ¾Æ´Ï±â ¶§¹®¿¡ ¼ö½ÄÀ» ¾µ·Á¸é ´Ù½Ã ¼ö½Ä ¸ðµå·Î ¸¸µé¾î¾ß ÇÑ´Ù.
\documentclass{article} \usepackage{amsmath} \usepackage{hfont} \newcommand{\je}{\text{Á¦}} \newcommand{\yl}{\text{¿}} \def\cntclmn#1{\multicolumn{1}{c}{#1}} \begin{document} \begin{tabular}{|ccc|} \cntclmn{\je} & \cntclmn{\je} & \cntclmn{\je} \\[-4pt] \cntclmn{1} & \cntclmn{2} & \cntclmn{3} \\[-5pt] \cntclmn{\yl} & \cntclmn{\yl} & \cntclmn{\yl} \\[2pt] $a$&$b$&$c$\\ $d$&$e$&$f$\\ $g$&$h$&$i$ \end{tabular} \end{document}¿Í °°ÀÌ ÀÔ·ÂÇÏ´Â ¼öµµ ÀÖ´Ù. Âü°í: ¿ª½Ã tabular ȯ°æ ³»´Â ¼ö½Ä ¸ðµå°¡ ¾Æ´Ï±â ¶§¹®¿¡ ¼ö½ÄÀ» ¾µ·Á¸é ¼ö½Ä ¸ðµå·Î ¸¸µé¾î¾ß ÇÑ´Ù. Çà·Ä½ÄÀÇ °£°ÝÀÌ °í¸£Áö ¾Ê¾Æ ¼öÇÐÇÏ´Â »ç¶÷µéÀÇ ¸¶À½¿¡´Â µéÁö ¾ÊÀ» ¼öµµ ÀÖ´Ù.
Since x=|1 2|, det x is not zero. |3 4|ÀÌ·± ¹®ÀåÀ» ¾²°í ½ÍÀºµ¥, display math¸¦ ¾²¸é, ÀÌ°ÍÀÌ ¹®ÀåÀ¸·Î ¿¬°áµÇÁö ¾Ê°í, Çà·Ä¸¸ ¶³¾îÁ® µû·Î display µÇ³×¿ä. ¹®Àå Àüü¸¦ displaymathÇÏ¸é µÇ±â´Â ÇÏÁö¸¸, ±×·¸°Ô ÇÏ°í ½ÍÁö´Â ¾Ê°í¿ä. ¹æ¹ýÀ» ¾Ë¾ÒÀ¸¸é ÁÁ°Ú½À´Ï´Ù.
\documentclass{article} \usepackage{amsmath} \begin{document} The matrix $\left( \begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right)$ is called the identity matrix. \end{document}
\documentclass{article} \usepackage{amsmath,amssymb} \begin{document} $A \begin{smallmatrix} \rightarrow \\[-2pt] \nrightarrow \end{smallmatrix} B$\qquad $A \begin{smallmatrix} \rightarrow \\[-2pt] \nleftarrow \end{smallmatrix} B$\qquad $A \begin{smallmatrix} \leftarrow \\[-2pt] \nrightarrow \end{smallmatrix} B$ \end{document}
\genfrac{¿ÞÂÊ ¹À½Ç¥}{¿À¸¥ÂÊ ¹À½Ç¥}{°¡·Î ¼±ÀÇ ±½±â}{½ºÅ¸ÀÏ}{ºÐÀÚ}{ºÐ¸ð}·Î Á¤ÀǵǴ ¸í·É¾î \genfracÀÇ Æ¯º°ÇÑ °æ¿ì·Î {ºÐÀÚ}{ºÐ¸ð}¸¸ ¼±ÅÃÇÏ¿© ³ÖÀ¸¸é µÇµµ·Ï ¸¸µé¾îÁ® ÀÖ´Ù. ±×¸®°í ³×° ¹À½Ç¥{} ¼Ó¿¡´Â 0, 1, 2, 3ÀÇ ¼ýÀÚ¸¦ ³ÖÀ» ¼ö Àִµ¥ 0Àº 'µð½ºÇ÷¹ÀÌ Çü', 1Àº 'º»¹® Çü'(\textstyle), 2´Â \scriptstyle, 3Àº \scriptscriptstyle ÀÌ´Ù. ºñ¿ö µÎ¸é ¸ðµåÀÌÀÇ ÀÀ¿ëÀ¸·Î °¡·É 2 X 1 Çà·ÄÀ» ²ª¼è ¹À½Ç¥ []·Î ÇÏ°í ½ÍÀ¸¸é
\newcommand\tbmatrix[2]{\genfrac{[}{]}{0pt}{}{#1}{#2}}·Î ÇÁ¸®¾Úºí¿¡ Á¤ÀÇÇÏ¿© µÎ°í ÇÊ¿äÇÑ °÷¿¡¼ $\tbmatrix{n}{m}$°ú °°ÀÌ ¾µ ¼ö ÀÖ´Ù. ÀÌ°ÍÀÇ ÀÀ¿ëÀ¸·Î º»ºÐ ¼Ó¿¡ 2 X 3 Çà·Ä $\tbmatrix{1\;2\;3}{0\;0\;0}$À» ÁÙ(Çà) °£°ÝÀ» ´Ã¸®Áö ¾Ê°í ³ÖÀ» ¼ö ÀÖ´Ù.